BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34384923)

  • 1. Analysis of complex protein elution behavior in preparative ion exchange processes using a colloidal particle adsorption model.
    Briskot T; Hahn T; Huuk T; Wang G; Kluters S; Studts J; Wittkopp F; Winderl J; Schwan P; Hagemann I; Kaiser K; Trapp A; Stamm SM; Koehn J; Malmquist G; Hubbuch J
    J Chromatogr A; 2021 Sep; 1654():462439. PubMed ID: 34384923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adsorption on ion exchange adsorbers: A comparison of a stoichiometric and non-stoichiometric modeling approach.
    Briskot T; Hahn T; Huuk T; Hubbuch J
    J Chromatogr A; 2021 Sep; 1653():462397. PubMed ID: 34284263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-state steric mass action model and case study on complex high loading behavior of mAb on ion exchange tentacle resin.
    Diedrich J; Heymann W; Leweke S; Hunt S; Todd R; Kunert C; Johnson W; von Lieres E
    J Chromatogr A; 2017 Nov; 1525():60-70. PubMed ID: 29055527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of colloidal proteins in ion-exchange chromatography under consideration of charge regulation.
    Briskot T; Hahn T; Huuk T; Hubbuch J
    J Chromatogr A; 2020 Jan; 1611():460608. PubMed ID: 31629491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Based Investigation on the Mass Transfer and Adsorption Mechanisms of Mono-Pegylated Lysozyme in Ion-Exchange Chromatography.
    Morgenstern J; Wang G; Baumann P; Hubbuch J
    Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the Steric Mass Action formalism for modeling under high loading conditions: Part 1. Investigation of the influence of pH on the steric shielding factor.
    Seelinger F; Wittkopp F; von Hirschheydt T; Hafner M; Frech C
    J Chromatogr A; 2022 Aug; 1676():463265. PubMed ID: 35779394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-Langmuir elution behavior of a bispecific monoclonal antibody in cation exchange chromatography: Mechanistic modeling using a pH-dependent Self-Association Steric Mass Action isotherm.
    Seelinger F; Wittkopp F; von Hirschheydt T; Frech C
    J Chromatogr A; 2023 Jan; 1689():463730. PubMed ID: 36592480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of complex antibody elution behavior under high protein load densities in ion exchange chromatography using an asymmetric activity coefficient.
    Huuk TC; Hahn T; Doninger K; Griesbach J; Hepbildikler S; Hubbuch J
    Biotechnol J; 2017 Mar; 12(3):. PubMed ID: 27976534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.
    Kluters S; Wittkopp F; Jöhnck M; Frech C
    J Sep Sci; 2016 Feb; 39(4):663-75. PubMed ID: 26549715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.
    Kumar V; Leweke S; von Lieres E; Rathore AS
    J Chromatogr A; 2015 Dec; 1426():140-53. PubMed ID: 26686559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the Steric Mass Action formalism for modeling under high loading conditions: Part 2. Investigation of high loading and column overloading effects.
    Seelinger F; Wittkopp F; von Hirschheydt T; Frech C
    J Chromatogr A; 2022 Aug; 1676():463266. PubMed ID: 35779393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of the mechanism of unfolding and aggregation of a monoclonal antibody in ion exchange chromatography.
    Poplewska I; Piątkowski W; Antos D
    J Chromatogr A; 2021 Jan; 1636():461687. PubMed ID: 33246679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and robust pooling design of a preparative cation-exchange chromatography step for purification of monoclonal antibody monomer from aggregates.
    Borg N; Brodsky Y; Moscariello J; Vunnum S; Vedantham G; Westerberg K; Nilsson B
    J Chromatogr A; 2014 Sep; 1359():170-81. PubMed ID: 25085821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.
    Lee YF; Jöhnck M; Frech C
    Biotechnol Prog; 2018 Jul; 34(4):973-986. PubMed ID: 29464892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic interpolation method predicts protein chromatographic elution from batch isotherm data without a detailed mechanistic isotherm model.
    Creasy A; Barker G; Yao Y; Carta G
    Biotechnol J; 2015 Sep; 10(9):1400-11. PubMed ID: 26015091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.
    Guo J; Zhang S; Carta G
    J Chromatogr A; 2014 Aug; 1356():117-28. PubMed ID: 25015241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic modeling of ligand density variations on anion exchange chromatography.
    Sanchez-Reyes G; Graalfs H; Hafner M; Frech C
    J Sep Sci; 2021 Feb; 44(4):805-821. PubMed ID: 33285038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotherm model discrimination for multimodal chromatography using mechanistic models derived from high-throughput batch isotherm data.
    Altern SH; Welsh JP; Lyall JY; Kocot AJ; Burgess S; Kumar V; Williams C; Lenhoff AM; Cramer SM
    J Chromatogr A; 2023 Mar; 1693():463878. PubMed ID: 36827799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography.
    Faraji N; Zhang Y; Ray AK
    J Chromatogr A; 2015 Sep; 1412():67-74. PubMed ID: 26277029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.
    Wang G; Hahn T; Hubbuch J
    J Chromatogr A; 2016 Sep; 1465():71-8. PubMed ID: 27575919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.