BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 34384974)

  • 1. An intratumoral injectable nanozyme hydrogel for hypoxia-resistant thermoradiotherapy.
    Wang Z; Zeng W; Chen Z; Suo W; Quan H; Tan ZJ
    Colloids Surf B Biointerfaces; 2021 Nov; 207():112026. PubMed ID: 34384974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable biocompatible nanocomposites of Prussian blue nanoparticles and bacterial cellulose as a safe and effective photothermal cancer therapy.
    Hong H; Kim M; Lee W; Jeon M; Lee C; Kim H; Im HJ; Piao Y
    J Nanobiotechnology; 2023 Oct; 21(1):365. PubMed ID: 37798714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prussian blue nanosphere-embedded
    Fu J; Wu B; Wei M; Huang Y; Zhou Y; Zhang Q; Du L
    Acta Pharm Sin B; 2019 May; 9(3):604-614. PubMed ID: 31193840
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Kim S; Sundaram A; Mathew AP; Hareshkumar VS; Mohapatra A; Thomas RG; Bui TTM; Moon K; Kweon S; Park IK; Jeong YY
    Biomater Sci; 2023 Sep; 11(18):6177-6192. PubMed ID: 37504889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable hydrogel nanoarchitectonics with near-infrared controlled drug delivery for in situ photothermal/endocrine synergistic endometriosis therapy.
    Tian W; Wang C; Chu R; Ge H; Sun X; Li M
    Biomater Res; 2023 Oct; 27(1):100. PubMed ID: 37805518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable Hydrogel for Synergetic Low Dose Radiotherapy, Chemodynamic Therapy and Photothermal Therapy.
    Chen M; Wang Z; Suo W; Bao Z; Quan H
    Front Bioeng Biotechnol; 2021; 9():757428. PubMed ID: 34881231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional AuPt Nanoparticles for Synergistic Photothermal and Radiation Therapy.
    Tang H; Chen J; Qi LH; Lyu M; Quan H; Tan ZJ
    Int J Nanomedicine; 2023; 18():6869-6882. PubMed ID: 38026515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relief of tumor hypoxia using a nanoenzyme amplifies NIR-II photoacoustic-guided photothermal therapy.
    Xue Q; Zeng S; Ren Y; Pan Y; Chen J; Chen N; Wong KKY; Song L; Fang C; Guo J; Xu J; Liu C; Zeng J; Sun L; Zhang H; Chen J
    Biomed Opt Express; 2024 Jan; 15(1):59-76. PubMed ID: 38223179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Photothermal Hydrogel in the Second Near-Infrared Window for Localized Tumor Therapy.
    Lu S; Wu Y; Liu Y; Sun X; Li J; Li J
    ACS Appl Bio Mater; 2023 Nov; 6(11):4694-4702. PubMed ID: 37824829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prussian blue nanoparticles coated with tumor cell membranes for precise photothermal therapy and subsequent inflammation reduction.
    Zou H; Wang H; Zhong Y; Zhang Z; Wang Z; Shang T
    Biochem Biophys Res Commun; 2024 Sep; 723():150173. PubMed ID: 38830299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red cell membrane-coating Prussian blue for combined photothermal and NO gas therapy for nasopharyngeal carcinoma.
    Wang W; Cheng Z; Xing H; Zhou S; Ye Q; Xiong G; Wang G; Ma D
    J Mater Chem B; 2024 Feb; 12(6):1579-1591. PubMed ID: 38259153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An injectable and thermosensitive hydrogel with nano-aided NIR-II phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration.
    Wang W; Zhang G; Wang Y; Ran J; Chen L; Wei Z; Zou H; Cai Y; Han W
    J Nanobiotechnology; 2023 Oct; 21(1):367. PubMed ID: 37805588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual chemodynamic/photothermal therapeutic nanoplatform based on DNA-functionalized prussian blue.
    Zeng Q; Jiang X; Chen M; Deng C; Li D; Wu H
    Bioorg Chem; 2024 Feb; 143():106981. PubMed ID: 37995645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable Carbon Dots-Based Hydrogel for Combined Photothermal Therapy and Photodynamic Therapy of Cancer.
    Yue J; Miao P; Li L; Yan R; Dong WF; Mei Q
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36286204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injectable, in situ forming and NIR-responsive hydrogel persistently reshaping tumor microenvironment for efficient melanoma therapy.
    Zhang H; Hu L; Xiao W; Su Y; Cao D
    Biomater Res; 2023 Nov; 27(1):118. PubMed ID: 37981704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese-enriched prussian blue nanohybrids with smaller electrode potential and lower charge transfer resistance to enhance combination therapy.
    Zhang WX; Li WY; Shu Y; Wang JH
    Colloids Surf B Biointerfaces; 2024 Jun; 241():114045. PubMed ID: 38897024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Adaptable Injectable TiN-Based Hydrogels for Antitumor and Antidrug-Resistant Bacterial Therapy.
    Xing J; Shan J; Xue H; Zhang H; Cheng L; Hao J; Wang X
    Adv Healthc Mater; 2024 Jun; ():e2400297. PubMed ID: 38877613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GSH-Triggered/Photothermal-Enhanced H
    Liang X; Kurboniyon MS; Zou Y; Luo K; Fang S; Xia P; Ning S; Zhang L; Wang C
    Pharmaceutics; 2023 Oct; 15(10):. PubMed ID: 37896203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-Enhanced Singlet Oxygen Generation of Prussian Blue-Based Nanocatalyst for Augmented Photodynamic Therapy.
    Wang D; Shi R; Zhou J; Shi S; Wu H; Xu P; Wang H; Xia G; Barnhart TE; Cai W; Guo Z; Chen Q
    iScience; 2018 Nov; 9():14-26. PubMed ID: 30368078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A light-controlled single-atom nanozyme hydrogels for glutathione depletion mediated low-dose radiotherapy.
    Zhong Y; Li X; Qi P; Sun C; Wang Z
    Nanotechnology; 2024 Jan; 35(13):. PubMed ID: 38134437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.