These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 34385089)

  • 21. AI-based monitoring of retinal fluid in disease activity and under therapy.
    Schmidt-Erfurth U; Reiter GS; Riedl S; Seeböck P; Vogl WD; Blodi BA; Domalpally A; Fawzi A; Jia Y; Sarraf D; Bogunović H
    Prog Retin Eye Res; 2022 Jan; 86():100972. PubMed ID: 34166808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepRetina: Layer Segmentation of Retina in OCT Images Using Deep Learning.
    Li Q; Li S; He Z; Guan H; Chen R; Xu Y; Wang T; Qi S; Mei J; Wang W
    Transl Vis Sci Technol; 2020 Dec; 9(2):61. PubMed ID: 33329940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated segmentation of macular edema in OCT using deep neural networks.
    Hu J; Chen Y; Yi Z
    Med Image Anal; 2019 Jul; 55():216-227. PubMed ID: 31096135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation.
    Rasti R; Biglari A; Rezapourian M; Yang Z; Farsiu S
    IEEE Trans Med Imaging; 2023 May; 42(5):1413-1423. PubMed ID: 37015695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep structure tensor graph search framework for automated extraction and characterization of retinal layers and fluid pathology in retinal SD-OCT scans.
    Hassan T; Akram MU; Masood MF; Yasin U
    Comput Biol Med; 2019 Feb; 105():112-124. PubMed ID: 30616039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinal volume change is a reliable OCT biomarker for disease activity in neovascular AMD.
    von der Burchard C; Treumer F; Ehlken C; Koinzer S; Purtskhvanidze K; Tode J; Roider J
    Graefes Arch Clin Exp Ophthalmol; 2018 Sep; 256(9):1623-1629. PubMed ID: 29915918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Systematic Prospective Comparison of Fluid Volume Evaluation across OCT Devices Used in Clinical Practice.
    Kostolna K; Reiter GS; Frank S; Coulibaly LM; Fuchs P; Röggla V; Gumpinger M; Leitner Barrios GP; Mares V; Bogunovic H; Schmidt-Erfurth U
    Ophthalmol Sci; 2024; 4(3):100456. PubMed ID: 38317867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
    Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK
    Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Hybrid Model Composed of Two Convolutional Neural Networks (CNNs) for Automatic Retinal Layer Segmentation of OCT Images in Retinitis Pigmentosa (RP).
    Wang YZ; Wu W; Birch DG
    Transl Vis Sci Technol; 2021 Nov; 10(13):9. PubMed ID: 34751740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss-balanced parallel decoding network for retinal fluid segmentation in OCT.
    Yu X; Li M; Ge C; Yuan M; Liu L; Mo J; Shum PP; Chen J
    Comput Biol Med; 2023 Oct; 165():107319. PubMed ID: 37611427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images.
    Philippi D; Rothaus K; Castelli M
    Sci Rep; 2023 Jan; 13(1):517. PubMed ID: 36627357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Capsule Network-based architectures for the segmentation of sub-retinal serous fluid in optical coherence tomography images of central serous chorioretinopathy.
    Pawan SJ; Sankar R; Jain A; Jain M; Darshan DV; Anoop BN; Kothari AR; Venkatesan M; Rajan J
    Med Biol Eng Comput; 2021 Jun; 59(6):1245-1259. PubMed ID: 33988817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prospective PED-study of intravitreal aflibercept for refractory vascularized pigment epithelium detachment due to age-related macular degeneration: morphologic characteristics of non-responders in optical coherence tomography.
    Clemens CR; Alten F; Termühlen J; Mihailovic N; Rosenberger F; Heiduschka P; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2020 Jul; 258(7):1411-1417. PubMed ID: 32306096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning-Based Retinal Nerve Fiber Layer Thickness Measurement of Murine Eyes.
    Ma R; Liu Y; Tao Y; Alawa KA; Shyu ML; Lee RK
    Transl Vis Sci Technol; 2021 Jul; 10(8):21. PubMed ID: 34297789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic Subretinal Fluid Segmentation of Retinal SD-OCT Images With Neurosensory Retinal Detachment Guided by Enface Fundus Imaging.
    Wu M; Chen Q; He X; Li P; Fan W; Yuan S; Park H
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):87-95. PubMed ID: 28436839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of OCT biomarker changes in treatment-naive neovascular AMD using a deep semantic segmentation algorithm.
    Asani B; Holmberg O; Schiefelbein JB; Hafner M; Herold T; Spitzer H; Siedlecki J; Kern C; Kortuem KU; Frishberg A; Theis FJ; Priglinger SG
    Eye (Lond); 2024 Jul; ():. PubMed ID: 39068248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations.
    Liu H; Wei D; Lu D; Tang X; Wang L; Zheng Y
    Med Image Anal; 2024 Jan; 91():103019. PubMed ID: 37944431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.