These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 34385121)

  • 1. Wind turbine blade wastes and the environmental impacts in Canada.
    Heng H; Meng F; McKechnie J
    Waste Manag; 2021 Sep; 133():59-70. PubMed ID: 34385121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Life cycle assessment of the use of decommissioned wind blades in second life applications.
    Nagle AJ; Mullally G; Leahy PG; Dunphy NP
    J Environ Manage; 2022 Jan; 302(Pt A):113994. PubMed ID: 34741945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
    Lichtenegger G; Rentizelas AA; Trivyza N; Siegl S
    Waste Manag; 2020 Apr; 106():120-131. PubMed ID: 32203899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsustainable Wind Turbine Blade Disposal Practices in the United States.
    Ramirez-Tejeda K; Turcotte DA; Pike S
    New Solut; 2017 Feb; 26(4):581-598. PubMed ID: 27794074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mini-review of end-of-life management of wind turbines: Current practices and closing the circular economy gap.
    Woo SM; Whale J
    Waste Manag Res; 2022 Dec; 40(12):1730-1744. PubMed ID: 35765772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades.
    Piotrowska K; Piasecka I
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment for municipal solid waste management: a case study from Ahvaz, Iran.
    Zarea MA; Moazed H; Ahmadmoazzam M; Malekghasemi S; Jaafarzadeh N
    Environ Monit Assess; 2019 Feb; 191(3):131. PubMed ID: 30725189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control the System and Environment of Post-Production Wind Turbine Blade Waste Using Life Cycle Models. Part 1. Environmental Transformation Models.
    Piasecka I; Bałdowska-Witos P; Flizikowski J; Piotrowska K; Tomporowski A
    Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impact and waste recycling technologies for modern wind turbines: An overview.
    Rathore N; Panwar NL
    Waste Manag Res; 2023 Apr; 41(4):744-759. PubMed ID: 36382768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion.
    Assamoi B; Lawryshyn Y
    Waste Manag; 2012 May; 32(5):1019-30. PubMed ID: 22099926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental sustainability of anaerobic digestion of household food waste.
    Slorach PC; Jeswani HK; Cuéllar-Franca R; Azapagic A
    J Environ Manage; 2019 Apr; 236():798-814. PubMed ID: 30776553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing support vector machines to foster sustainable development and innovation in the clean energy sector via green finance.
    Wang W; Huang H; Peng X; Wang Z; Zeng Y
    J Environ Manage; 2024 Jun; 360():121225. PubMed ID: 38796867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating environmental impacts of alternative construction waste management approaches using supply-chain-linked life-cycle analysis.
    Kucukvar M; Egilmez G; Tatari O
    Waste Manag Res; 2014 Jun; 32(6):500-8. PubMed ID: 24855225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle-based, energy-related analysis for waste management strategies: a case study of two impact indicators in Pyongyang.
    O NC; Jo CH; Kang KH; Kim RH; Kim SI
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13365-13374. PubMed ID: 33184788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life Cycle Assessment of a Thermal Recycling Process as an Alternative to Existing CFRP and GFRP Composite Wastes Management Options.
    Karuppannan Gopalraj S; Deviatkin I; Horttanainen M; Kärki T
    Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.