These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34385121)

  • 21. Areas on which to focus when seeking to reduce the greenhouse gas emissions of commercial waste management. A case study of a hypermarket, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2018 Jun; 76():1-18. PubMed ID: 29576513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circular economy performance and carbon footprint of wind turbine blade waste management alternatives.
    Diez-Cañamero B; Mendoza JMF
    Waste Manag; 2023 Jun; 164():94-105. PubMed ID: 37037101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of carbon footprint emissions and environmental concerns of solid waste treatment and disposal techniques; case study of Malaysia.
    Malakahmad A; Abualqumboz MS; Kutty SRM; Abunama TJ
    Waste Manag; 2017 Dec; 70():282-292. PubMed ID: 28935377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea.
    Ryu C
    J Air Waste Manag Assoc; 2010 Feb; 60(2):176-83. PubMed ID: 20222530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach.
    Khan MMH; Havukainen J; Horttanainen M
    Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space, Time, and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe.
    Dammeier LC; Loriaux JM; Steinmann ZJN; Smits DA; Wijnant IL; van den Hurk B; Huijbregts MAJ
    Environ Sci Technol; 2019 Aug; 53(15):9289-9297. PubMed ID: 31269396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity production from anaerobic digestion of household organic waste in Ontario: techno-economic and GHG emission analyses.
    Sanscartier D; Maclean HL; Saville B
    Environ Sci Technol; 2012 Jan; 46(2):1233-42. PubMed ID: 22191423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental Impacts of Global Offshore Wind Energy Development until 2040.
    Li C; Mogollón JM; Tukker A; Steubing B
    Environ Sci Technol; 2022 Aug; 56(16):11567-11577. PubMed ID: 35901230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 1/2.
    Doerffer K; Bałdowska-Witos P; Pysz M; Doerffer P; Tomporowski A
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact assessment of waste management options in Singapore.
    Tan RB; Khoo HH
    J Air Waste Manag Assoc; 2006 Mar; 56(3):244-54. PubMed ID: 16573187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
    Ikhlayel M
    Waste Manag; 2017 Oct; 68():458-474. PubMed ID: 28662843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
    Ferreira ETF; Balestieri JAP
    Waste Manag Res; 2018 Mar; 36(3):247-258. PubMed ID: 29375021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pomace waste management scenarios in Québec--impact on greenhouse gas emissions.
    Gassara F; Brar SK; Pelletier F; Verma M; Godbout S; Tyagi RD
    J Hazard Mater; 2011 Sep; 192(3):1178-85. PubMed ID: 21733627
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2.
    Bałdowska-Witos P; Doerffer K; Pysz M; Doerffer P; Tomporowski A; Opielak M
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada.
    Parisé J; Walker TR
    J Environ Manage; 2017 Oct; 201():252-259. PubMed ID: 28672197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competition of different methods for recovering energy from waste.
    Friege H; Fendel A
    Waste Manag Res; 2011 Oct; 29(10 Suppl):30-8. PubMed ID: 21824986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.