BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34385394)

  • 1. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals.
    Abel BA; Snyder RL; Coates GW
    Science; 2021 Aug; 373(6556):783-789. PubMed ID: 34385394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.
    Shen T; Chen K; Chen Y; Ling J
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300099. PubMed ID: 37020406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins.
    Li XL; Clarke RW; An HY; Gowda RR; Jiang JY; Xu TQ; Chen EY
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303791. PubMed ID: 37102633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalizable and Chemically Recyclable Thermoplastics from Chemoselective Ring-Opening Polymerization of Bio-renewable Bifunctional α-Methylene-δ-valerolactone.
    Li J; Liu F; Liu Y; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207105. PubMed ID: 35674460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-High-Molecular-Weight Poly(Dioxolane): Enhancing the Mechanical Performance of a Chemically Recyclable Polymer.
    Hester HG; Abel BA; Coates GW
    J Am Chem Soc; 2023 Apr; 145(16):8800-8804. PubMed ID: 37058609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers.
    Wang Y; Zhu Y; Lv W; Wang X; Tao Y
    J Am Chem Soc; 2023 Jan; 145(3):1877-1885. PubMed ID: 36594572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging Trends in Closed-Loop Recycling Polymers: Monomer Design and Catalytic Bulk Depolymerization.
    Liu Y; Lu XB
    Chemistry; 2023 Apr; 29(23):e202203635. PubMed ID: 36737871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.
    Osten KM; Mehrkhodavandi P
    Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the Synthesis of Chemically Recyclable Polymers.
    Li XL; Ma K; Xu F; Xu TQ
    Chem Asian J; 2023 Feb; 18(3):e202201167. PubMed ID: 36623942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Trans-Benzocyclobutene-Fused Cyclooctene as a Monomer for Chemically Recyclable Polymer.
    Su HW; Zhou J; Yoon S; Wang J
    Chem Asian J; 2023 Feb; 18(3):e202201133. PubMed ID: 36534946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Recyclable Polymer System Based on Nucleophilic Aromatic Ring-Opening Polymerization.
    Su YL; Yue L; Tran H; Xu M; Engler A; Ramprasad R; Qi HJ; Gutekunst WR
    J Am Chem Soc; 2023 Jun; 145(25):13950-13956. PubMed ID: 37307298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and Controlled Polymerization of Bio-sourced δ-Caprolactone toward Fully Recyclable Polyesters and Thermoplastic Elastomers.
    Li C; Wang L; Yan Q; Liu F; Shen Y; Li Z
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202201407. PubMed ID: 35150037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of cyclic structures in the cationic ring-opening polymerization of 1,3-dioxolane.
    Coenen AMJ; Harings JAW; Ghazanfari S; Jockenhoevel S; Bernaerts KV
    RSC Adv; 2020 Mar; 10(16):9623-9632. PubMed ID: 35497238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating the Thermodynamics and Thermal Properties of Depolymerizable Polycyclooctenes through Substituent Effects.
    Sathe D; Chen H; Wang J
    Macromol Rapid Commun; 2023 Jan; 44(1):e2200304. PubMed ID: 35686515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(2,3-Dihydrofuran): A Strong, Biorenewable, and Degradable Thermoplastic Synthesized via Room Temperature Cationic Polymerization.
    Spring SW; Hsu JH; Sifri RJ; Yang SM; Cerione CS; Lambert TH; Ellison CJ; Fors BP
    J Am Chem Soc; 2022 Aug; 144(34):15727-15734. PubMed ID: 35981404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ring-Opening Metathesis Polymerization of Biomass-Derived Levoglucosenol.
    Debsharma T; Behrendt FN; Laschewsky A; Schlaad H
    Angew Chem Int Ed Engl; 2019 May; 58(20):6718-6721. PubMed ID: 30835937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective and Sequential Catalytic Chemical Depolymerization and Upcycling of Mixed Plastics.
    Spicer AJ; Brandolese A; Dove AP
    ACS Macro Lett; 2024 Jan; 13(2):189-194. PubMed ID: 38253019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Living Coordination Polymerization of a Six-Five Bicyclic Lactone to Produce Completely Recyclable Polyester.
    Zhu JB; Chen EY
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12558-12562. PubMed ID: 30088314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recycling waste thermoplastic for energy efficient construction materials: An experimental investigation.
    Mondal MK; Bose BP; Bansal P
    J Environ Manage; 2019 Jun; 240():119-125. PubMed ID: 30928789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.