BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34385445)

  • 1. Cryo-EM structures of the TTYH family reveal a novel architecture for lipid interactions.
    Sukalskaia A; Straub MS; Deneka D; Sawicka M; Dutzler R
    Nat Commun; 2021 Aug; 12(1):4893. PubMed ID: 34385445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of tweety homolog proteins TTYH2 and TTYH3 reveal a Ca
    Li B; Hoel CM; Brohawn SG
    Nat Commun; 2021 Nov; 12(1):6913. PubMed ID: 34824283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2).
    He Y; Ramsay AJ; Hunt ML; Whitbread AK; Myers SA; Hooper JD
    Biochem J; 2008 May; 412(1):45-55. PubMed ID: 18260827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Drosophila tweety family: molecular candidates for large-conductance Ca2+-activated Cl- channels.
    Suzuki M
    Exp Physiol; 2006 Jan; 91(1):141-7. PubMed ID: 16219661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling.
    Straub MS; Alvadia C; Sawicka M; Dutzler R
    Elife; 2021 Jul; 10():. PubMed ID: 34263724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs.
    Kern DM; Oh S; Hite RK; Brohawn SG
    Elife; 2019 Feb; 8():. PubMed ID: 30775971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray structure of a calcium-activated TMEM16 lipid scramblase.
    Brunner JD; Lim NK; Schenck S; Duerst A; Dutzler R
    Nature; 2014 Dec; 516(7530):207-12. PubMed ID: 25383531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs.
    Kalienkova V; Alvadia C; Clerico Mosina V; Paulino C
    Methods Mol Biol; 2020; 2127():245-273. PubMed ID: 32112327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
    Kowal J; Biyani N; Chami M; Scherer S; Rzepiela AJ; Baumgartner P; Upadhyay V; Nimigean CM; Stahlberg H
    Structure; 2018 Jan; 26(1):20-27.e3. PubMed ID: 29249605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into gap junction channels boosted by cryo-EM.
    Oshima A
    Curr Opin Struct Biol; 2020 Aug; 63():42-48. PubMed ID: 32339861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using MemBlob to Analyze Transmembrane Regions Based on Cryo-EM Maps.
    Csizmadia G; Farkas B; Katona E; Tusnády GE; Hegedűs T
    Methods Mol Biol; 2020; 2112():123-130. PubMed ID: 32006282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional characterization of the bestrophin-2 anion channel.
    Owji AP; Zhao Q; Ji C; Kittredge A; Hopiavuori A; Fu Z; Ward N; Clarke OB; Shen Y; Zhang Y; Hendrickson WA; Yang T
    Nat Struct Mol Biol; 2020 Apr; 27(4):382-391. PubMed ID: 32251414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F.
    Alvadia C; Lim NK; Clerico Mosina V; Oostergetel GT; Dutzler R; Paulino C
    Elife; 2019 Feb; 8():. PubMed ID: 30785399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monomeric structure of human TMEM63A protein.
    Wu X; Shang T; Lü X; Luo D; Yang D
    Proteins; 2024 Jun; 92(6):750-756. PubMed ID: 38217391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of the otopetrin proton channels Otop1 and Otop3.
    Saotome K; Teng B; Tsui CCA; Lee WH; Tu YH; Kaplan JP; Sansom MSP; Liman ER; Ward AB
    Nat Struct Mol Biol; 2019 Jun; 26(6):518-525. PubMed ID: 31160780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the human ClC-1 chloride channel.
    Wang K; Preisler SS; Zhang L; Cui Y; Missel JW; Grønberg C; Gotfryd K; Lindahl E; Andersson M; Calloe K; Egea PF; Klaerke DA; Pusch M; Pedersen PA; Zhou ZH; Gourdon P
    PLoS Biol; 2019 Apr; 17(4):e3000218. PubMed ID: 31022181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automatic method for predicting transmembrane protein structures using cryo-EM and evolutionary data.
    Fleishman SJ; Harrington S; Friesner RA; Honig B; Ben-Tal N
    Biophys J; 2004 Nov; 87(5):3448-59. PubMed ID: 15339802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-EM structure of type 1 IP
    Baker MR; Fan G; Seryshev AB; Agosto MA; Baker ML; Serysheva II
    Commun Biol; 2021 May; 4(1):625. PubMed ID: 34035440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
    Efremov RG; Gatsogiannis C; Raunser S
    Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of the mammalian mechanosensitive Piezo1 channel.
    Ge J; Li W; Zhao Q; Li N; Chen M; Zhi P; Li R; Gao N; Xiao B; Yang M
    Nature; 2015 Nov; 527(7576):64-9. PubMed ID: 26390154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.