These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 34385461)

  • 1. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.
    Yuan T; Yan N; Fei T; Zheng J; Meng J; Li N; Liu J; Zhang H; Xie L; Ying W; Li D; Shi L; Sun Y; Li Y; Li Y; Sun Y; Zuo E
    Nat Commun; 2021 Aug; 12(1):4902. PubMed ID: 34385461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of C-to-G transversion in mouse embryos via CG editors.
    Cao T; Liu S; Qiu Y; Gao M; Wu J; Wu G; Liang P; Huang J
    Transgenic Res; 2022 Oct; 31(4-5):445-455. PubMed ID: 35704130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning.
    Koblan LW; Arbab M; Shen MW; Hussmann JA; Anzalone AV; Doman JL; Newby GA; Yang D; Mok B; Replogle JM; Xu A; Sisley TA; Weissman JS; Adamson B; Liu DR
    Nat Biotechnol; 2021 Nov; 39(11):1414-1425. PubMed ID: 34183861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions.
    Chen S; Liu Z; Lai L; Li Z
    CRISPR J; 2022 Jun; 5(3):389-396. PubMed ID: 35238619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase.
    Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H
    Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding C-T base editing toolkit with diversified cytidine deaminases.
    Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z
    Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in
    Shelake RM; Pramanik D; Kim JY
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns.
    Liang Y; Xie J; Zhang Q; Wang X; Gou S; Lin L; Chen T; Ge W; Zhuang Z; Lian M; Chen F; Li N; Ouyang Z; Lai C; Liu X; Li L; Ye Y; Wu H; Wang K; Lai L
    Nucleic Acids Res; 2022 May; 50(9):5384-5399. PubMed ID: 35544322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing.
    He Y; Zhou X; Chang C; Chen G; Liu W; Li G; Fan X; Sun M; Miao C; Huang Q; Ma Y; Yuan F; Chang X
    Mol Cell; 2024 Apr; 84(7):1257-1270.e6. PubMed ID: 38377993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring C-To-G Base Editing in Rice, Tomato, and Poplar.
    Sretenovic S; Liu S; Li G; Cheng Y; Fan T; Xu Y; Zhou J; Zheng X; Coleman G; Zhang Y; Qi Y
    Front Genome Ed; 2021; 3():756766. PubMed ID: 34713268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable DNA pyrimidine base editing via engineered uracil-DNA glycosylase.
    Yi Z; Zhang X; Wei X; Li J; Ren J; Zhang X; Zhang Y; Tang H; Chang X; Yu Y; Wei W
    Nat Commun; 2024 Jul; 15(1):6397. PubMed ID: 39080265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion.
    Wang X; Li J; Wang Y; Yang B; Wei J; Wu J; Wang R; Huang X; Chen J; Yang L
    Nat Biotechnol; 2018 Nov; 36(10):946-949. PubMed ID: 30125268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning.
    Arbab M; Shen MW; Mok B; Wilson C; Matuszek Ż; Cassa CA; Liu DR
    Cell; 2020 Jul; 182(2):463-480.e30. PubMed ID: 32533916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations.
    Wang L; Xue W; Zhang H; Gao R; Qiu H; Wei J; Zhou L; Lei YN; Wu X; Li X; Liu C; Wu J; Chen Q; Ma H; Huang X; Cai C; Zhang Y; Yang B; Yin H; Yang L; Chen J
    Nat Cell Biol; 2021 May; 23(5):552-563. PubMed ID: 33972728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.