These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34385532)

  • 1. Measuring landslide vulnerability status of Chukha, Bhutan using deep learning algorithms.
    Saha S; Sarkar R; Roy J; Hembram TK; Acharya S; Thapa G; Drukpa D
    Sci Rep; 2021 Aug; 11(1):16374. PubMed ID: 34385532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea.
    Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S
    J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms.
    Nhu VH; Shirzadi A; Shahabi H; Singh SK; Al-Ansari N; Clague JJ; Jaafari A; Chen W; Miraki S; Dou J; Luu C; Górski K; Thai Pham B; Nguyen HD; Ahmad BB
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based landslide susceptibility mapping.
    Azarafza M; Azarafza M; Akgün H; Atkinson PM; Derakhshani R
    Sci Rep; 2021 Dec; 11(1):24112. PubMed ID: 34916586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison.
    Huang Z; Peng L; Li S; Liu Y; Zhou S
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping.
    Moayedi H; Dehrashid AA
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran.
    Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China).
    Wang Y; Sun D; Wen H; Zhang H; Zhang F
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the influence of road construction on landslide susceptibility in Saudi Arabia's mountainous terrain: a Bayesian-optimised deep learning approach with attention mechanism and sensitivity analysis.
    Alqadhi S; Mallick J; Hang HT; Al Asmari AFS; Kumari R
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):3169-3194. PubMed ID: 38082044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method.
    Tekin S; Çan T
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran.
    Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network.
    Huang J; Zeng X; Ding L; Yin Y; Li Y
    Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landslide susceptibility assessment based on frequency ratio and semi-supervised heterogeneous ensemble learning model.
    Zhao Y; Qin S; Zhang C; Yao J; Xing Z; Cao J; Zhang R
    Environ Sci Pollut Res Int; 2024 May; 31(22):32043-32059. PubMed ID: 38642229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid machine learning approach for landslide prediction, Uttarakhand, India.
    Kainthura P; Sharma N
    Sci Rep; 2022 Nov; 12(1):20101. PubMed ID: 36418362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan.
    Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT
    Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors.
    Luo X; Lin F; Zhu S; Yu M; Zhang Z; Meng L; Peng J
    PLoS One; 2019; 14(4):e0215134. PubMed ID: 30973936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting optimal conditioning parameters for landslide susceptibility: an experimental research on Aqabat Al-Sulbat, Saudi Arabia.
    Alqadhi S; Mallick J; Talukdar S; Bindajam AA; Van Hong N; Saha TK
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3743-3762. PubMed ID: 34389958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan.
    Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z
    PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.