These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34385532)

  • 21. Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment.
    Arrogante-Funes P; Bruzón AG; Arrogante-Funes F; Ramos-Bernal RN; Vázquez-Jiménez R
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment.
    Nhu VH; Mohammadi A; Shahabi H; Ahmad BB; Al-Ansari N; Shirzadi A; Clague JJ; Jaafari A; Chen W; Nguyen H
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms.
    He Q; Shahabi H; Shirzadi A; Li S; Chen W; Wang N; Chai H; Bian H; Ma J; Chen Y; Wang X; Chapi K; Ahmad BB
    Sci Total Environ; 2019 May; 663():1-15. PubMed ID: 30708212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China.
    Wang Y; Fang Z; Hong H
    Sci Total Environ; 2019 May; 666():975-993. PubMed ID: 30970504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China.
    Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z
    Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative Assessment of Landslide Susceptibility Comparing Statistical Index, Index of Entropy, and Weights of Evidence in the Shangnan Area, China.
    Liu J; Duan Z
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer.
    Bao S; Liu J; Wang L; Konečný M; Che X; Xu S; Li P
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa.
    Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C
    Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms.
    Panahi M; Gayen A; Pourghasemi HR; Rezaie F; Lee S
    Sci Total Environ; 2020 Nov; 741():139937. PubMed ID: 32574917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China.
    Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Performance Assessment Approach Using Photogrammetric Techniques for Landslide Susceptibility Mapping with Logistic Regression, ANN and Random Forest.
    Sevgen E; Kocaman S; Nefeslioglu HA; Gokceoglu C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China.
    Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique.
    Hussain MA; Chen Z; Zheng Y; Shoaib M; Shah SU; Ali N; Afzal Z
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya.
    Das S; Sarkar S; Kanungo DP
    Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping.
    Hong H; Tsangaratos P; Ilia I; Loupasakis C; Wang Y
    Sci Total Environ; 2020 Nov; 742():140549. PubMed ID: 32629264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda.
    Kuradusenge M; Kumaran S; Zennaro M
    Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32532022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: a case study of Gilgit-Baltistan, Pakistan.
    Kulsoom I; Hua W; Hussain S; Chen Q; Khan G; Shihao D
    Sci Rep; 2023 Feb; 13(1):3344. PubMed ID: 36849465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility.
    Band SS; Janizadeh S; Chandra Pal S; Saha A; Chakrabortty R; Shokri M; Mosavi A
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33008132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method.
    Saha S; Arabameri A; Saha A; Blaschke T; Ngo PTT; Nhu VH; Band SS
    Sci Total Environ; 2021 Apr; 764():142928. PubMed ID: 33127137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.