These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34385574)

  • 1. Predicting species distributions and community composition using satellite remote sensing predictors.
    Pinto-Ledezma JN; Cavender-Bares J
    Sci Rep; 2021 Aug; 11(1):16448. PubMed ID: 34385574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog.
    Uribe-Rivera DE; Soto-Azat C; Valenzuela-Sánchez A; Bizama G; Simonetti JA; Pliscoff P
    Ecol Appl; 2017 Jul; 27(5):1633-1645. PubMed ID: 28397328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Community structure informs species geographic distributions.
    Montesinos-Navarro A; Estrada A; Font X; Matias MG; Meireles C; Mendoza M; Honrado JP; Prasad HD; Vicente JR; Early R
    PLoS One; 2018; 13(5):e0197877. PubMed ID: 29791491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impacts of climate change on aquatic insects in temperate alpine regions: Complementary modeling approaches applied to Swiss rivers.
    Timoner P; Fasel M; Ashraf Vaghefi SS; Marle P; Castella E; Moser F; Lehmann A
    Glob Chang Biol; 2021 Aug; 27(15):3565-3581. PubMed ID: 33837599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating eco-evolutionary information into species distribution models provides comprehensive predictions of species range shifts under climate change.
    Lu WX; Wang ZZ; Hu XY; Rao GY
    Sci Total Environ; 2024 Feb; 912():169501. PubMed ID: 38145682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.
    Record S; Strecker A; Tuanmu MN; Beaudrot L; Zarnetske P; Belmaker J; Gerstner B
    PLoS One; 2018; 13(4):e0194650. PubMed ID: 29652936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing.
    Zarnetske PL; Read QD; Record S; Gaddis KD; Pau S; Hobi ML; Malone SL; Costanza J; M Dahlin K; Latimer AM; Wilson AM; Grady JM; Ollinger SV; Finley AO
    Glob Ecol Biogeogr; 2019 May; 28(5):548-556. PubMed ID: 31217748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing community-level and single-species models predictions of species distributions and assemblage composition after 25 years of land cover change.
    Bonthoux S; Baselga A; Balent G
    PLoS One; 2013; 8(1):e54179. PubMed ID: 23349818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building use-inspired species distribution models: Using multiple data types to examine and improve model performance.
    Braun CD; Arostegui MC; Farchadi N; Alexander M; Afonso P; Allyn A; Bograd SJ; Brodie S; Crear DP; Culhane EF; Curtis TH; Hazen EL; Kerney A; Lezama-Ochoa N; Mills KE; Pugh D; Queiroz N; Scott JD; Skomal GB; Sims DW; Thorrold SR; Welch H; Young-Morse R; Lewison RL
    Ecol Appl; 2023 Sep; 33(6):e2893. PubMed ID: 37285072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of scale-dependent geodiversity on species distribution models in a biodiversity hotspot.
    Gerstner BE; Blair ME; Bills P; Cruz-Rodriguez CA; Zarnetske PL
    Philos Trans A Math Phys Eng Sci; 2024 Apr; 382(2269):20230057. PubMed ID: 38342213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of satellite greenness to predict plant diversity among wetland types, ecoregions, and disturbance levels.
    Taddeo S; Dronova I; Harris K
    Ecol Appl; 2019 Oct; 29(7):e01961. PubMed ID: 31240799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat heterogeneity captured by 30-m resolution satellite image texture predicts bird richness across the United States.
    Farwell LS; Elsen PR; Razenkova E; Pidgeon AM; Radeloff VC
    Ecol Appl; 2020 Dec; 30(8):e02157. PubMed ID: 32358975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).
    Schipper AM; Posthuma L; de Zwart D; Huijbregts MA
    Environ Sci Technol; 2014 Dec; 48(24):14464-71. PubMed ID: 25418062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a flexible learning activity on biodiversity and spatial scale concepts using open-access vegetation datasets from the National Ecological Observatory Network.
    Styers DM; Schafer JL; Kolozsvary MB; Brubaker KM; Scanga SE; Anderson LJ; Mitchell JJ; Barnett D
    Ecol Evol; 2021 May; 11(9):3660-3671. PubMed ID: 33976765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale.
    Kissling WD; Ahumada JA; Bowser A; Fernandez M; Fernández N; García EA; Guralnick RP; Isaac NJB; Kelling S; Los W; McRae L; Mihoub JB; Obst M; Santamaria M; Skidmore AK; Williams KJ; Agosti D; Amariles D; Arvanitidis C; Bastin L; De Leo F; Egloff W; Elith J; Hobern D; Martin D; Pereira HM; Pesole G; Peterseil J; Saarenmaa H; Schigel D; Schmeller DS; Segata N; Turak E; Uhlir PF; Wee B; Hardisty AR
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):600-625. PubMed ID: 28766908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover.
    Peng S; Ramirez-Parada TH; Mazer SJ; Record S; Park I; Ellison AM; Davis CC
    New Phytol; 2024 Jun; 242(5):2338-2352. PubMed ID: 38531810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Historical Atlas Data to Develop High-Resolution Distribution Models of Freshwater Fishes.
    Huang J; Frimpong EA
    PLoS One; 2015; 10(6):e0129995. PubMed ID: 26075902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.