These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34385718)

  • 1. Parameter Estimation and Variable Selection for Big Systems of Linear Ordinary Differential Equations: A Matrix-Based Approach.
    Wu L; Qiu X; Yuan YX; Wu H
    J Am Stat Assoc; 2019; 114(526):657-667. PubMed ID: 34385718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations.
    Cao J; Huang JZ; Wu H
    J Comput Graph Stat; 2012; 21(1):42-56. PubMed ID: 23155351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference in dynamic systems using B-splines and quasilinearized ODE penalties.
    Frasso G; Jaeger J; Lambert P
    Biom J; 2016 May; 58(3):691-714. PubMed ID: 26602190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Inductive Linearization for simulation and estimation with an application to the Michaelis-Menten model.
    Sharif S; Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2022 Aug; 49(4):445-453. PubMed ID: 35788853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.
    Xue H; Wu S; Wu Y; Ramirez Idarraga JC; Wu H
    Stat Med; 2018 Jul; 37(17):2630-2644. PubMed ID: 29722041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis.
    Tashkova K; Korošec P; Silc J; Todorovski L; Džeroski S
    BMC Syst Biol; 2011 Oct; 5():159. PubMed ID: 21989196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.
    Wu H; Lu T; Xue H; Liang H
    J Am Stat Assoc; 2014 Apr; 109(506):700-716. PubMed ID: 25061254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate solutions to ordinary differential equations using least squares support vector machines.
    Mehrkanoon S; Falck T; Suykens JA
    IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1356-67. PubMed ID: 24807921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.
    Wu H; Xue H; Kumar A
    Biometrics; 2012 Jun; 68(2):344-52. PubMed ID: 22376200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using single-index ODEs to study dynamic gene regulatory network.
    Zhang Q; Yu Y; Zhang J; Liang H
    PLoS One; 2018; 13(2):e0192833. PubMed ID: 29474376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the relative importance of experimental data points in parameter estimation.
    Jeong JE; Qiu P
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):103. PubMed ID: 30463558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian parameter estimation for nonlinear modelling of biological pathways.
    Ghasemi O; Lindsey ML; Yang T; Nguyen N; Huang Y; Jin YF
    BMC Syst Biol; 2011; 5 Suppl 3(Suppl 3):S9. PubMed ID: 22784628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sieve Estimation of Constant and Time-Varying Coefficients in Nonlinear Ordinary Differential Equation Models by Considering Both Numerical Error and Measurement Error.
    Xue H; Miao H; Wu H
    Ann Stat; 2010 Jan; 38(4):2351-2387. PubMed ID: 21132064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model-based initial guess for estimating parameters in systems of ordinary differential equations.
    Dattner I
    Biometrics; 2015 Dec; 71(4):1176-84. PubMed ID: 26172865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network Reconstruction From High-Dimensional Ordinary Differential Equations.
    Chen S; Shojaie A; Witten DM
    J Am Stat Assoc; 2017; 112(520):1697-1707. PubMed ID: 29618851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of approaches for parameter estimation on stochastic models: Generic least squares versus specialized approaches.
    Zimmer C; Sahle S
    Comput Biol Chem; 2016 Apr; 61():75-85. PubMed ID: 26826353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Joint estimation approach to sparse additive ordinary differential equations.
    Zhang N; Nanshan M; Cao J
    Stat Comput; 2022; 32(5):69. PubMed ID: 36033975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust estimation for ordinary differential equation models.
    Cao J; Wang L; Xu J
    Biometrics; 2011 Dec; 67(4):1305-13. PubMed ID: 21401565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating a predator-prey dynamical model with the parameter cascades method.
    Cao J; Fussmann GF; Ramsay JO
    Biometrics; 2008 Sep; 64(3):959-967. PubMed ID: 18047526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.
    Fang Y; Wu H; Zhu LX
    Stat Sin; 2011 Jul; 21(3):1145-1170. PubMed ID: 22171150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.