These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34385810)

  • 1. Generalized scale-change models for recurrent event processes under informative censoring.
    Xu G; Chiou SH; Yan J; Marr K; Huang CY
    Stat Sin; 2020; 30():1773-1795. PubMed ID: 34385810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiparametric estimation of the accelerated mean model with panel count data under informative examination times.
    Chiou SH; Xu G; Yan J; Huang CY
    Biometrics; 2018 Sep; 74(3):944-953. PubMed ID: 29286532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joint scale-change models for recurrent events and failure time.
    Xu G; Chiou SH; Huang CY; Wang MC; Yan J
    J Am Stat Assoc; 2017; 112(518):794-805. PubMed ID: 28943684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiparametric Regression Estimation for Recurrent Event Data with Errors in Covariates under Informative Censoring.
    Yu H; Cheng YJ; Wang CY
    Int J Biostat; 2016 Nov; 12(2):. PubMed ID: 27497870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint modeling of generalized scale-change models for recurrent event and failure time data.
    Wang X; Sun L
    Lifetime Data Anal; 2023 Jan; 29(1):1-33. PubMed ID: 36066694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Recurrent Event Data With Informative Censoring.
    Wang MC; Qin J; Chiang CT
    J Am Stat Assoc; 2001; 96(455):. PubMed ID: 24204084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiparametric analysis for recurrent event data with time-dependent covariates and informative censoring.
    Huang CY; Qin J; Wang MC
    Biometrics; 2010 Mar; 66(1):39-49. PubMed ID: 19459839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for multivariate recurrent event data with measurement error and informative censoring.
    Yu H; Cheng YJ; Wang CY
    Biometrics; 2018 Sep; 74(3):966-976. PubMed ID: 29441520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of multivariate recurrent event data with time-dependent covariates and informative censoring.
    Zhao X; Liu L; Liu Y; Xu W
    Biom J; 2012 Sep; 54(5):585-99. PubMed ID: 22886587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Modeling and Estimation for Recurrent Event Processes and Failure Time Data.
    Huang CY; Wang MC
    J Am Stat Assoc; 2004 Dec; 99(468):1153-1165. PubMed ID: 24068850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiparametric frailty models for zero-inflated event count data in the presence of informative dropout.
    Diao G; Zeng D; Hu K; Ibrahim JG
    Biometrics; 2019 Dec; 75(4):1168-1178. PubMed ID: 31106400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Association Between Two Event Times with Observations Subject to Informative Censoring.
    Li D; Hu XJ; Wang R
    J Am Stat Assoc; 2023; 118(542):1282-1294. PubMed ID: 37313369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bivariate joint frailty model with mixture framework for survival analysis of recurrent events with dependent censoring and cure fraction.
    Tawiah R; McLachlan GJ; Ng SK
    Biometrics; 2020 Sep; 76(3):753-766. PubMed ID: 31863594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust estimation for panel count data with informative observation times and censoring times.
    Jiang H; Su W; Zhao X
    Lifetime Data Anal; 2020 Jan; 26(1):65-84. PubMed ID: 30542803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo and conditional score approach to joint analysis of current count and current status data.
    Wen CC; Chen YH
    Biometrics; 2018 Dec; 74(4):1223-1231. PubMed ID: 29665618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg.
    Chiou SH; Xu G; Yan J; Huang CY
    J Stat Softw; 2023; 105():. PubMed ID: 38586564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysing panel count data with informative observation times.
    Huang CY; Wang MC; Zhang Y
    Biometrika; 2006 Dec; 93(4):763-775. PubMed ID: 23729818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional modeling of longitudinal data with terminal event.
    Kong S; Nan B; Kalbfleisch JD; Saran R; Hirth R
    J Am Stat Assoc; 2018; 113(521):357-368. PubMed ID: 30853735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical inference on shape and size indexes for counting processes.
    Sun Y; Chiou SH; Marr KA; Huang CY
    Biometrika; 2022 Mar; 109(1):195-208. PubMed ID: 37790796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Additive-Multiplicative Mean Model for Panel Count Data with Dependent Observation and Dropout Processes.
    Yu G; Li Y; Zhu L; Zhao H; Sun J; Robison LL
    Scand Stat Theory Appl; 2019 Jun; 46(2):414-431. PubMed ID: 31223184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.