These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34385909)

  • 41. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Noise-induced cochlear synaptopathy: Past findings and future studies.
    Kobel M; Le Prell CG; Liu J; Hawks JW; Bao J
    Hear Res; 2017 Jun; 349():148-154. PubMed ID: 28007526
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice.
    Maison SF; Yin Y; Liberman LD; Liberman MC
    Hear Res; 2016 May; 335():94-104. PubMed ID: 26944177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noise Masking in Cochlear Synaptopathy: Auditory Brainstem Response vs. Auditory Nerve Response in Mouse.
    Suthakar K; Liberman MC
    J Neurophysiol; 2022 May; 127(6):1574-85. PubMed ID: 35583974
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers.
    Maison SF; Casanova E; Holstein GR; Bettler B; Liberman MC
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):50-63. PubMed ID: 18925381
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of hidden hearing loss in normal-hearing firearm users.
    Grinn SK; Le Prell CG
    Front Neurosci; 2022; 16():1005148. PubMed ID: 36389238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Auditory sensori-neural alterations induced by salicylate.
    Cazals Y
    Prog Neurobiol; 2000 Dec; 62(6):583-631. PubMed ID: 10880852
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Repeated temporary threshold shift and changes in cochlear and neural function.
    Morgan DS; Arteaga AA; Bosworth NA; Proctor G; Vetter DE; Lobarinas E; Spankovich C
    Hear Res; 2019 Sep; 381():107780. PubMed ID: 31437651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain.
    Salvi R; Sun W; Ding D; Chen GD; Lobarinas E; Wang J; Radziwon K; Auerbach BD
    Front Neurosci; 2016; 10():621. PubMed ID: 28149271
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhesus Cochlear and Vestibular Functions Are Preserved After Inner Ear Injection of Saline Volume Sufficient for Gene Therapy Delivery.
    Dai C; Lehar M; Sun DQ; Rvt LS; Carey JP; MacLachlan T; Brough D; Staecker H; Della Santina AM; Hullar TE; Della Santina CC
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):601-617. PubMed ID: 28646272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Hidden hearing loss-damage to hearing processing even with low-threshold noise exposure?].
    Hesse G; Kastellis G
    HNO; 2019 Jun; 67(6):417-424. PubMed ID: 30874853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.
    Heeringa AN; van Dijk P
    Hear Res; 2014 Jun; 312():38-47. PubMed ID: 24650953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects.
    Haggerty RA; Hutson KA; Riggs WJ; Brown KD; Pillsbury HC; Adunka OF; Buchman CA; Fitzpatrick DC
    Front Neurol; 2023; 14():1104574. PubMed ID: 37483448
    [TBL] [Abstract][Full Text] [Related]  

  • 55. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.
    Hu BH; Zheng XY; McFadden SL; Kopke RD; Henderson D
    Hear Res; 1997 Nov; 113(1-2):198-206. PubMed ID: 9387999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss.
    Park SN; Back SA; Park KH; Seo JH; Noh HI; Akil O; Lustig LR; Yeo SW
    Auris Nasus Larynx; 2013 Feb; 40(1):11-7. PubMed ID: 22364846
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review.
    Shehabi AM; Prendergast G; Plack CJ
    Front Aging Neurosci; 2022; 14():877588. PubMed ID: 35813954
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates.
    Liberman MC; Dodds LW
    Hear Res; 1984 Oct; 16(1):43-53. PubMed ID: 6511672
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of auditory nerve fibers to compound action potential of the auditory nerve.
    Bourien J; Tang Y; Batrel C; Huet A; Lenoir M; Ladrech S; Desmadryl G; Nouvian R; Puel JL; Wang J
    J Neurophysiol; 2014 Sep; 112(5):1025-39. PubMed ID: 24848461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.