These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34386480)
1. Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on α-Residues and Cyclic δ-Amino Acids: A Computational Study. Blanco-González A; Calvelo M; Garrido PF; Amorín M; Granja JR; Piñeiro Á; Garcia-Fandino R Front Chem; 2021; 9():704160. PubMed ID: 34386480 [TBL] [Abstract][Full Text] [Related]
2. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081 [TBL] [Abstract][Full Text] [Related]
3. Membrane-targeted self-assembling cyclic peptide nanotubes. Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753 [TBL] [Abstract][Full Text] [Related]
4. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison. Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Calvelo M; Vázquez S; García-Fandiño R Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433 [TBL] [Abstract][Full Text] [Related]
6. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes. Carvajal-Diaz JA; Cagin T J Phys Chem B; 2016 Aug; 120(32):7872-9. PubMed ID: 27448165 [TBL] [Abstract][Full Text] [Related]
7. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285 [TBL] [Abstract][Full Text] [Related]
8. Ion channel models based on self-assembling cyclic peptide nanotubes. Montenegro J; Ghadiri MR; Granja JR Acc Chem Res; 2013 Dec; 46(12):2955-65. PubMed ID: 23898935 [TBL] [Abstract][Full Text] [Related]
9. Cyclic γ-Peptides With Transmembrane Water Channel Properties. Chen J; Li Q; Wu P; Liu J; Wang D; Yuan X; Zheng R; Sun R; Li L Front Chem; 2020; 8():368. PubMed ID: 32426330 [TBL] [Abstract][Full Text] [Related]
10. Insight of Transmembrane Processes of Self-Assembling Nanotubes Based on a Cyclic Peptide Using Coarse Grained Molecular Dynamics Simulation. Fu Y; Yan T; Xu X J Phys Chem B; 2017 Sep; 121(38):9006-9012. PubMed ID: 28872323 [TBL] [Abstract][Full Text] [Related]
11. Energetics of ion transport in a peptide nanotube. Dehez F; Tarek M; Chipot C J Phys Chem B; 2007 Sep; 111(36):10633-5. PubMed ID: 17705530 [TBL] [Abstract][Full Text] [Related]
12. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics. Gong B; Shao Z Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055 [TBL] [Abstract][Full Text] [Related]
14. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Calvelo M; Granja JR; Garcia-Fandino R Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191 [TBL] [Abstract][Full Text] [Related]
15. Uncovering the mechanisms of cyclic peptide self-assembly in membranes with the chirality-aware MA(R/S)TINI forcefield. Cabezón A; Calvelo M; Granja JR; Piñeiro Á; Garcia-Fandino R J Colloid Interface Sci; 2023 Jul; 642():84-99. PubMed ID: 37001460 [TBL] [Abstract][Full Text] [Related]
16. Parallel Versus Antiparallel β-Sheet Structure in Cyclic Peptide Hybrids Containing γ- or δ-Cyclic Amino Acids. Calvelo M; Lamas A; Guerra A; Amorín M; Garcia-Fandino R; Granja JR Chemistry; 2020 May; 26(26):5846-5858. PubMed ID: 31999874 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach. Maroli N; Kolandaivel P J Biomol Struct Dyn; 2020 Jan; 38(1):186-199. PubMed ID: 30678549 [TBL] [Abstract][Full Text] [Related]
18. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Brea RJ; Reiriz C; Granja JR Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200 [TBL] [Abstract][Full Text] [Related]
19. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes. Gong T; Fan J J Chem Inf Model; 2021 Jun; 61(6):2754-2765. PubMed ID: 34128668 [TBL] [Abstract][Full Text] [Related]
20. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. Amorín M; Castedo L; Granja JR J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]