These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34386629)
1. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC. Kristanto J; Azis MM; Purwono S Heliyon; 2021 Jul; 7(7):e07669. PubMed ID: 34386629 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Chen T; Zhang J; Wu J Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484 [TBL] [Abstract][Full Text] [Related]
3. Pyrolysis and gasification of typical components in wastes with macro-TGA. Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422 [TBL] [Abstract][Full Text] [Related]
4. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101 [TBL] [Abstract][Full Text] [Related]
5. Application of sectionalized single-step reaction approach (SSRA) and distributed activation energy model (DAEM) on the pyrolysis kinetics model of upstream oily sludge: Construction procedure and data reproducibility comparison. Qi Y; Ge B; Cao Q; Xi F; Shi X; Si Y; Wang X; Gao B; Yue Q; Xu X Sci Total Environ; 2021 Jun; 774():145751. PubMed ID: 33611005 [TBL] [Abstract][Full Text] [Related]
6. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere. Zhang J; Chen T; Wu J; Wu J Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567 [TBL] [Abstract][Full Text] [Related]
7. Kinetic compensation effect in logistic distributed activation energy model for lignocellulosic biomass pyrolysis. Xu D; Chai M; Dong Z; Rahman MM; Yu X; Cai J Bioresour Technol; 2018 Oct; 265():139-145. PubMed ID: 29890438 [TBL] [Abstract][Full Text] [Related]
8. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Mishra RK; Mohanty K Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770 [TBL] [Abstract][Full Text] [Related]
9. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. Radojević M; Janković B; Jovanović V; Stojiljković D; Manić N PLoS One; 2018; 13(10):e0206657. PubMed ID: 30379972 [TBL] [Abstract][Full Text] [Related]
10. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM). Lin Y; Chen Z; Dai M; Fang S; Liao Y; Yu Z; Ma X Bioresour Technol; 2018 Jul; 259():173-180. PubMed ID: 29550731 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis. Cai J; Wu W; Liu R Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091 [TBL] [Abstract][Full Text] [Related]
12. Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison. Mian I; Li X; Jian Y; Dacres OD; Zhong M; Liu J; Ma F; Rahman N Bioresour Technol; 2019 Dec; 294():122099. PubMed ID: 31520856 [TBL] [Abstract][Full Text] [Related]
13. General distributed activation energy model (G-DAEM) on co-pyrolysis kinetics of bagasse and sewage sludge. Lin Y; Tian Y; Xia Y; Fang S; Liao Y; Yu Z; Ma X Bioresour Technol; 2019 Feb; 273():545-555. PubMed ID: 30472354 [TBL] [Abstract][Full Text] [Related]
14. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Shen DK; Gu S; Jin B; Fang MX Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030 [TBL] [Abstract][Full Text] [Related]
15. Catalytic performance of potassium in lignocellulosic biomass pyrolysis based on an optimized three-parallel distributed activation energy model. Wang C; Li L; Zeng Z; Xu X; Ma X; Chen R; Su C Bioresour Technol; 2019 Jun; 281():412-420. PubMed ID: 30849697 [TBL] [Abstract][Full Text] [Related]
16. Pyrolytic degradation of peanut shell: Activation energy dependence on the conversion. Torres-García E; Ramírez-Verduzco LF; Aburto J Waste Manag; 2020 Apr; 106():203-212. PubMed ID: 32240937 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis kinetics of potassium-impregnated rubberwood analyzed by evolutionary computation. Lin YY; Chen WH; Colin B; Lin BJ; Leconte F; Pétrissans A; Pétrissans M Bioresour Technol; 2021 Jan; 319():124145. PubMed ID: 32979598 [TBL] [Abstract][Full Text] [Related]
18. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related]
19. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Wang X; Hu M; Hu W; Chen Z; Liu S; Hu Z; Xiao B Bioresour Technol; 2016 Nov; 219():510-520. PubMed ID: 27521788 [TBL] [Abstract][Full Text] [Related]
20. Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model. Arenas CN; Navarro MV; Martínez JD Bioresour Technol; 2019 Sep; 288():121485. PubMed ID: 31136890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]