These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34387010)

  • 21. Protein structure model refinement in CASP12 using short and long molecular dynamics simulations in implicit solvent.
    Terashi G; Kihara D
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):189-201. PubMed ID: 28833585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks.
    Zhao C; Liu T; Wang Z
    Proteins; 2022 Dec; 90(12):2091-2102. PubMed ID: 35842895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The expanded FindCore method for identification of a core atom set for assessment of protein structure prediction.
    Snyder DA; Grullon J; Huang YJ; Tejero R; Montelione GT
    Proteins; 2014 Feb; 82 Suppl 2(0 2):219-30. PubMed ID: 24327305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospects for de novo phasing with de novo protein models.
    Das R; Baker D
    Acta Crystallogr D Biol Crystallogr; 2009 Feb; 65(Pt 2):169-75. PubMed ID: 19171972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein NMR structures refined with Rosetta have higher accuracy relative to corresponding X-ray crystal structures.
    Mao B; Tejero R; Baker D; Montelione GT
    J Am Chem Soc; 2014 Feb; 136(5):1893-906. PubMed ID: 24392845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The utility of comparative models and the local model quality for protein crystal structure determination by Molecular Replacement.
    Pawlowski M; Bujnicki JM
    BMC Bioinformatics; 2012 Nov; 13():289. PubMed ID: 23126528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.
    Terwilliger TC; Dimaio F; Read RJ; Baker D; Bunkóczi G; Adams PD; Grosse-Kunstleve RW; Afonine PV; Echols N
    J Struct Funct Genomics; 2012 Jun; 13(2):81-90. PubMed ID: 22418934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the application of the expected log-likelihood gain to decision making in molecular replacement.
    Oeffner RD; Afonine PV; Millán C; Sammito M; Usón I; Read RJ; McCoy AJ
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):245-255. PubMed ID: 29652252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of the model refinement category in CASP12.
    Hovan L; Oleinikovas V; Yalinca H; Kryshtafovych A; Saladino G; Gervasio FL
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):152-167. PubMed ID: 29071750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses.
    Borges RJ; Meindl K; Triviño J; Sammito M; Medina A; Millán C; Alcorlo M; Hermoso JA; Fontes MRM; Usón I
    Acta Crystallogr D Struct Biol; 2020 Mar; 76(Pt 3):221-237. PubMed ID: 32133987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of predictions in the CASP10 model refinement category.
    Nugent T; Cozzetto D; Jones DT
    Proteins; 2014 Feb; 82 Suppl 2(Suppl 2):98-111. PubMed ID: 23900810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of protein structure refinement in CASP9.
    MacCallum JL; Pérez A; Schnieders MJ; Hua L; Jacobson MP; Dill KA
    Proteins; 2011; 79 Suppl 10(Suppl 10):74-90. PubMed ID: 22069034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Consistent refinement of submitted models at CASP using a knowledge-based potential.
    Chopra G; Kalisman N; Levitt M
    Proteins; 2010 Sep; 78(12):2668-78. PubMed ID: 20589633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein oligomer structure prediction using GALAXY in CASP14.
    Park T; Woo H; Yang J; Kwon S; Won J; Seok C
    Proteins; 2021 Dec; 89(12):1844-1851. PubMed ID: 34363243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
    McCoy AJ; Oeffner RD; Millán C; Sammito M; Usón I; Read RJ
    Acta Crystallogr D Struct Biol; 2018 Apr; 74(Pt 4):279-289. PubMed ID: 29652255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning-Based Advances in Protein Structure Prediction.
    Pakhrin SC; Shrestha B; Adhikari B; Kc DB
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34074028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of protein complexes in CASP14 with emphasis on the interaction interface prediction.
    Dapkūnas J; Olechnovič K; Venclovas Č
    Proteins; 2021 Dec; 89(12):1834-1843. PubMed ID: 34176161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Refinement of Atomic Structures Against cryo-EM Maps.
    Murshudov GN
    Methods Enzymol; 2016; 579():277-305. PubMed ID: 27572731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective refinement and selection of near-native models in protein structure prediction.
    Zhang J; Barz B; Zhang J; Xu D; Kosztin I
    Proteins; 2015 Oct; 83(10):1823-35. PubMed ID: 26214389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of template-based protein structure predictions in CASP10.
    Huang YJ; Mao B; Aramini JM; Montelione GT
    Proteins; 2014 Feb; 82 Suppl 2(0 2):43-56. PubMed ID: 24323734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.