These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 34387015)
41. Identification of Bostrycin Derivatives as Potential Inhibitors of Mycobacterium tuberculosis Protein Tyrosine Phosphatase (MptpB). Chen DN; Chen H; She ZG; Lu YJ Med Chem; 2016; 12(3):296-302. PubMed ID: 26434800 [TBL] [Abstract][Full Text] [Related]
42. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Liu Z; Ma Q; Cao J; Gao X; Ren J; Xue Y Mol Biosyst; 2011 Oct; 7(10):2737-40. PubMed ID: 21850344 [TBL] [Abstract][Full Text] [Related]
43. Acetate Kinase (AcK) is Essential for Microbial Growth and Betel-derived Compounds Potentially Target AcK, PhoP and MDR Proteins in M. tuberculosis, V. cholerae and Pathogenic E. coli: An in silico and in vitro Study. Tiwari S; Barh D; Imchen M; Rao E; Kumavath RK; Seenivasan SP; Jaiswal AK; Jamal SB; Kumar V; Ghosh P; Azevedo V Curr Top Med Chem; 2018; 18(31):2731-2740. PubMed ID: 30663567 [TBL] [Abstract][Full Text] [Related]
44. Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase. Ofer N; Forer N; Korman M; Vishkautzan M; Khalaila I; Gur E J Biol Chem; 2013 Apr; 288(16):11287-93. PubMed ID: 23471967 [TBL] [Abstract][Full Text] [Related]
45. The regulatory significance of tag recycling in the mycobacterial Pup-proteasome system. Elharar Y; Schlussel S; Hecht N; Meijler MM; Gur E FEBS J; 2017 Jun; 284(12):1804-1814. PubMed ID: 28440944 [TBL] [Abstract][Full Text] [Related]
46. Analysis of pupylation of Streptomyces hygroscopicus 5008 in vitro. Xu X; Niu Y; Liang K; Shen G; Cao Q; Yang Y Biochem Biophys Res Commun; 2016 May; 474(1):126-130. PubMed ID: 27105915 [TBL] [Abstract][Full Text] [Related]
47. Design, synthesis and evaluation of new GEQ derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth. Chollet A; Mori G; Menendez C; Rodriguez F; Fabing I; Pasca MR; Madacki J; Korduláková J; Constant P; Quémard A; Bernardes-Génisson V; Lherbet C; Baltas M Eur J Med Chem; 2015 Aug; 101():218-35. PubMed ID: 26142487 [TBL] [Abstract][Full Text] [Related]
48. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Saharan VD; Mahajan SS Bioorg Med Chem Lett; 2017 Feb; 27(4):808-815. PubMed ID: 28117201 [TBL] [Abstract][Full Text] [Related]
49. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Pearce MJ; Mintseris J; Ferreyra J; Gygi SP; Darwin KH Science; 2008 Nov; 322(5904):1104-7. PubMed ID: 18832610 [TBL] [Abstract][Full Text] [Related]
50. Deciphering Molecular Virulence Mechanism of Mycobacterium tuberculosis Dop isopeptidase Based on Its Sequence-Structure-Function Linkage. Prathiviraj R; Chellapandi P Protein J; 2020 Feb; 39(1):33-45. PubMed ID: 31760575 [TBL] [Abstract][Full Text] [Related]