These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34387405)

  • 21. Tendon-inspired anti-freezing tough gels.
    Duan S; Wu S; Hua M; Wu D; Yan Y; Zhu X; He X
    iScience; 2021 Sep; 24(9):102989. PubMed ID: 34505006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application.
    Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J
    Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers.
    Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW
    Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoresponsive Double Network Hydrogels with Exceptional Compressive Mechanical Properties.
    Means AK; Ehrhardt DA; Whitney LV; Grunlan MA
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28895241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors.
    Ding H; Liang X; Xu J; Tang Z; Li Z; Liang R; Sun G
    ACS Appl Mater Interfaces; 2021 May; 13(19):22774-22784. PubMed ID: 33944548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness.
    Lin X; Zhang L; Duan B
    Mater Horiz; 2021 Aug; 8(9):2503-2512. PubMed ID: 34870294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness.
    Xu X; He C; Luo F; Wang H; Peng Z
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement.
    Lin S; Cao C; Wang Q; Gonzalez M; Dolbow JE; Zhao X
    Soft Matter; 2014 Oct; 10(38):7519-27. PubMed ID: 25097115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Tough, Stretchable, and Enzymatically Degradable Hydrogels Modulated by Bioinspired Hydrophobic β-Sheet Peptides.
    Xiang Y; Zhang J; Mao H; Yan Z; Wang X; Bao C; Zhu L
    Biomacromolecules; 2021 Nov; 22(11):4846-4856. PubMed ID: 34706536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How can multi-bond network hydrogels dissipate energy more effectively: an investigation on the relationship between network structure and properties.
    Xu H; Shi FK; Liu XY; Zhong M; Xie XM
    Soft Matter; 2020 May; 16(18):4407-4413. PubMed ID: 32323693
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatically-mineralized double-network hydrogels with ultrahigh mechanical strength, toughness, and stiffness.
    Wang L; Zhao W; Zhao Y; Li W; Wang G; Zhang Q
    Theranostics; 2023; 13(2):673-684. PubMed ID: 36632214
    [No Abstract]   [Full Text] [Related]  

  • 33. Antibacterial Zwitterionic Polyelectrolyte Hydrogel Adhesives with Adhesion Strength Mediated by Electrostatic Mismatch.
    Wang J; Wang L; Wu C; Pei X; Cong Y; Zhang R; Fu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46816-46826. PubMed ID: 33001623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Universal and Simple Method to Obtain Hydrogels with Combined Extreme Mechanical Properties and Their Application as Tendon Substitutes.
    He Y; Ding G; Yu R; Yan W; Zhang M; Liu R; Jiang L; Wang J; Huang W
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):54215-54224. PubMed ID: 36441918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyzwitterions as a Versatile Building Block of Tough Hydrogels: From Polyelectrolyte Complex Gels to Double-Network Gels.
    Yin H; King DR; Sun TL; Saruwatari Y; Nakajima T; Kurokawa T; Gong JP
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50068-50076. PubMed ID: 33085900
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supertough Lignin Hydrogels with Multienergy Dissipative Structures and Ultrahigh Antioxidative Activities.
    You X; Wang X; Zhang HJ; Cui K; Zhang A; Wang L; Yadav C; Li X
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39892-39901. PubMed ID: 32805809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons.
    Park N; Kim J
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4479-4489. PubMed ID: 34969247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mussel byssus cuticle-inspired ultrastiff and stretchable triple-crosslinked hydrogels.
    Dong C; Fan H; Tang F; Gao X; Feng K; Wang J; Jin Z
    J Mater Chem B; 2021 Jan; 9(2):373-380. PubMed ID: 33283808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-Dimensional Printed Hydrogels with High Elasticity, High Toughness, and Ionic Conductivity for Multifunctional Applications.
    Deng Z; Qian T; Hang F
    ACS Biomater Sci Eng; 2020 Dec; 6(12):7061-7070. PubMed ID: 33320594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Stretchable and Tough Physical Silk Fibroin-Based Double Network Hydrogels.
    Zhao Y; Guan J; Wu SJ
    Macromol Rapid Commun; 2019 Dec; 40(23):e1900389. PubMed ID: 31692142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.