These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 34387412)
1. Inhibition of S. aureus Infection of Human Umbilical Vein Endothelial Cells (HUVECs) by Trehalose- and Glucose-Functionalized Gold Nanoparticles. Li Y; Ariotti N; Aghaei B; Pandzic E; Ganda S; Willcox M; Sanchez-Felix M; Stenzel M Angew Chem Int Ed Engl; 2021 Oct; 60(42):22652-22658. PubMed ID: 34387412 [TBL] [Abstract][Full Text] [Related]
2. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. Luo LJ; Lin TY; Yao CH; Kuo PY; Matsusaki M; Harroun SG; Huang CC; Lai JY J Colloid Interface Sci; 2019 Feb; 536():112-126. PubMed ID: 30366177 [TBL] [Abstract][Full Text] [Related]
3. Dual-functional gold nanoparticles with antimicrobial and proangiogenic activities improve the healing of multidrug-resistant bacteria-infected wounds in diabetic mice. Wei SC; Chang L; Huang CC; Chang HT Biomater Sci; 2019 Nov; 7(11):4482-4490. PubMed ID: 31531425 [TBL] [Abstract][Full Text] [Related]
4. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. Khalid HF; Tehseen B; Sarwar Y; Hussain SZ; Khan WS; Raza ZA; Bajwa SZ; Kanaras AG; Hussain I; Rehman A J Hazard Mater; 2019 Feb; 364():441-448. PubMed ID: 30384254 [TBL] [Abstract][Full Text] [Related]
5. Mercaptophenylboronic Acid-Activated Gold Nanoparticles as Nanoantibiotics against Multidrug-Resistant Bacteria. Wang L; Yang J; Yang X; Hou Q; Liu S; Zheng W; Long Y; Jiang X ACS Appl Mater Interfaces; 2020 Nov; 12(46):51148-51159. PubMed ID: 33155812 [TBL] [Abstract][Full Text] [Related]
6. Bimetallic nanoparticles against multi-drug resistant bacteria. Zhao X; Jia Y; Dong R; Deng J; Tang H; Hu F; Liu S; Jiang X Chem Commun (Camb); 2020 Sep; 56(74):10918-10921. PubMed ID: 32808607 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the antibacterial activity of Ag-NPs conjugated with a specific antibody against Staphylococcus aureus after photoactivation. Al-Sharqi A; Apun K; Vincent M; Kanakaraju D; Bilung LM; Sum MSH J Appl Microbiol; 2020 Jan; 128(1):102-115. PubMed ID: 31596989 [TBL] [Abstract][Full Text] [Related]
8. Dopamine-assisted one-pot synthesis of gold nanoworms and their application as photothermal agents. Liao Z; Zhang W; Qiao Z; Luo J; Ai Niwaer AE; Meng X; Wang H; Li X; Zuo F; Zhao Z J Colloid Interface Sci; 2020 Mar; 562():81-90. PubMed ID: 31837622 [TBL] [Abstract][Full Text] [Related]
9. Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles' antibacterial properties. Chen MN; Chan CF; Huang SL; Lin YS J Sci Food Agric; 2019 May; 99(7):3693-3702. PubMed ID: 30663065 [TBL] [Abstract][Full Text] [Related]
10. Cytotoxicity and antibacterial assessment of gallic acid capped gold nanoparticles. Kim DY; Kim M; Shinde S; Sung JS; Ghodake G Colloids Surf B Biointerfaces; 2017 Jan; 149():162-167. PubMed ID: 27756012 [TBL] [Abstract][Full Text] [Related]
12. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Singh H; Du J; Singh P; Yi TH Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1163-1170. PubMed ID: 28784039 [TBL] [Abstract][Full Text] [Related]
13. Vancomycin-Functionalized Gold and Silver Nanoparticles as an Antibacterial Nanoplatform Against Methicillin-Resistant Staphylococcus aureus. Hur YE; Park Y J Nanosci Nanotechnol; 2016 Jun; 16(6):6393-9. PubMed ID: 27427725 [TBL] [Abstract][Full Text] [Related]
14. D-alanyl-D-alanine-Modified Gold Nanoparticles Form a Broad-Spectrum Sensor for Bacteria. Yang X; Dang Y; Lou J; Shao H; Jiang X Theranostics; 2018; 8(5):1449-1457. PubMed ID: 29507633 [No Abstract] [Full Text] [Related]
15. Effect of synthesis, purification and growth determination methods on the antibacterial and antifungal activity of gold nanoparticles. López-Lorente ÁI; Cárdenas S; González-Sánchez ZI Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109805. PubMed ID: 31349488 [TBL] [Abstract][Full Text] [Related]
16. L-Threoascorbic acid treatment promotes S. aureus-infected primary human endothelial cells survival and function, as well as intracellular bacterial killing, and immunomodulates the release of IL-1β and soluble ICAM-1. Dahou S; Smahi MC; Nouari W; Dahmani Z; Benmansour S; Ysmail-Dahlouk L; Miliani M; Yebdri F; Fakir N; Laoufi MY; Chaib-Draa M; Tourabi A; Aribi M Int Immunopharmacol; 2021 Jun; 95():107476. PubMed ID: 33676147 [TBL] [Abstract][Full Text] [Related]
17. Assessing the effect of different shapes of glyco-gold nanoparticles on bacterial adhesion and infections. Chaudhary PM; Sangabathuni S; Murthy RV; Paul A; Thulasiram HV; Kikkeri R Chem Commun (Camb); 2015 Nov; 51(86):15669-72. PubMed ID: 26359971 [TBL] [Abstract][Full Text] [Related]
18. Sorafenib derivatives-functionalized gold nanoparticles confer protection against tumor angiogenesis and proliferation via suppression of EGFR and VEGFR-2. Huang W; Xing Y; Zhu L; Zhuo J; Cai M Exp Cell Res; 2021 Sep; 406(1):112633. PubMed ID: 34089726 [TBL] [Abstract][Full Text] [Related]
19. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Soshnikova V; Kim YJ; Singh P; Huo Y; Markus J; Ahn S; Castro-Aceituno V; Kang J; Chokkalingam M; Mathiyalagan R; Yang DC Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):108-117. PubMed ID: 28290213 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial activity and increased freeze-drying stability of sialyllactose-reduced silver nanoparticles using sucrose and trehalose. Noh HJ; Im AR; Kim HS; Sohng JK; Kim CK; Kim YS; Cho S; Park Y J Nanosci Nanotechnol; 2012 May; 12(5):3884-95. PubMed ID: 22852321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]