These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34387471)

  • 1. Evaluation of Amide Bioisosteres Leading to 1,2,3-Triazole Containing Compounds as GPR88 Agonists: Design, Synthesis, and Structure-Activity Relationship Studies.
    Rahman MT; Decker AM; Laudermilk L; Maitra R; Ma W; Ben Hamida S; Darcq E; Kieffer BL; Jin C
    J Med Chem; 2021 Aug; 64(16):12397-12413. PubMed ID: 34387471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, Synthesis, and Structure-Activity Relationship Studies of (4-Alkoxyphenyl)glycinamides and Bioisosteric 1,3,4-Oxadiazoles as GPR88 Agonists.
    Rahman MT; Decker AM; Langston TL; Mathews KM; Laudermilk L; Maitra R; Ma W; Darcq E; Kieffer BL; Jin C
    J Med Chem; 2020 Dec; 63(23):14989-15012. PubMed ID: 33205975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis and pharmacological evaluation of 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives as GPR88 agonists.
    Jin C; Decker AM; Langston TL
    Bioorg Med Chem; 2017 Jan; 25(2):805-812. PubMed ID: 27956039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, Synthesis, and Structure-Activity Relationship Studies of Novel GPR88 Agonists (4-Substituted-phenyl)acetamides Based on the Reversed Amide Scaffold.
    Rahman MT; Guan D; Chaminda Lakmal HH; Decker AM; Imler GH; Kerr AT; Harris DL; Jin C
    ACS Chem Neurosci; 2024 Jan; 15(1):169-192. PubMed ID: 38086012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mice Lacking GPR88 Show Motor Deficit, Improved Spatial Learning, and Low Anxiety Reversed by Delta Opioid Antagonist.
    Meirsman AC; Le Merrer J; Pellissier LP; Diaz J; Clesse D; Kieffer BL; Becker JA
    Biol Psychiatry; 2016 Jun; 79(11):917-27. PubMed ID: 26188600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the Metabolic Stability of GPR88 Agonist RTI-13951-33: Design, Synthesis, and Biological Evaluation.
    Rahman MT; Decker AM; Ben Hamida S; Perrey DA; Chaminda Lakmal HH; Maitra R; Darcq E; Kieffer BL; Jin C
    J Med Chem; 2023 Feb; 66(4):2964-2978. PubMed ID: 36749855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, synthesis, and pharmacological evaluation of 4-azolyl-benzamide derivatives as novel GPR52 agonists.
    Tokumaru K; Ito Y; Nomura I; Nakahata T; Shimizu Y; Kurimoto E; Aoyama K; Aso K
    Bioorg Med Chem; 2017 Jun; 25(12):3098-3115. PubMed ID: 28433511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, pharmacological characterization, and structure-activity relationship studies of small molecular agonists for the orphan GPR88 receptor.
    Jin C; Decker AM; Huang XP; Gilmour BP; Blough BE; Roth BL; Hu Y; Gill JB; Zhang XP
    ACS Chem Neurosci; 2014 Jul; 5(7):576-87. PubMed ID: 24793972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Substitution on the Aniline Moiety of the GPR88 Agonist 2-PCCA: Synthesis, Structure-Activity Relationships, and Molecular Modeling Studies.
    Jin C; Decker AM; Harris DL; Blough BE
    ACS Chem Neurosci; 2016 Oct; 7(10):1418-1432. PubMed ID: 27499251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and evaluation of phenylglycinols and phenyl amines as agonists of GPR88.
    Dzierba CD; Bi Y; Dasgupta B; Hartz RA; Ahuja V; Cianchetta G; Kumi G; Dong L; Aleem S; Fink C; Garcia Y; Green M; Han J; Kwon S; Qiao Y; Wang J; Zhang Y; Liu Y; Zipp G; Liang Z; Burford N; Ferrante M; Bertekap R; Lewis M; Cacace A; Grace J; Wilson A; Nouraldeen A; Westphal R; Kimball D; Carson K; Bronson JJ; Macor JE
    Bioorg Med Chem Lett; 2015 Apr; 25(7):1448-52. PubMed ID: 25690789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal GPR88 Modulates Foraging Efficiency.
    Rainwater A; Sanz E; Palmiter RD; Quintana A
    J Neurosci; 2017 Aug; 37(33):7939-7947. PubMed ID: 28729439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of BI-9508, a Brain-Penetrant GPR88-Receptor-Agonist Tool Compound for
    Fer M; Amalric C; Arban R; Baron L; Ben Hamida S; Breh-Schlanser P; Cui Y; Darcq E; Eickmeier C; Faye V; Franchet C; Frauli M; Halter C; Heyer M; Hoenke C; Hoerer S; Hucke OT; Joseph C; Kieffer BL; Lebrun L; Lotz N; Mayer S; Omrani A; Recolet M; Schaeffer L; Schann S; Schlecker A; Steinberg E; Viloria M; Würstle K; Young K; Zinser A; Montel F; Klepp J
    J Med Chem; 2024 Jul; 67(13):11296-11325. PubMed ID: 38949964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a high-throughput calcium mobilization assay for the orphan receptor GPR88.
    Decker AM; Gay EA; Mathews KM; Rosa TC; Langston TL; Maitra R; Jin C
    J Biomed Sci; 2017 Mar; 24(1):23. PubMed ID: 28347302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, and structure-activity relationships of 3,4,5-trisubstituted 4,5-dihydro-1,2,4-oxadiazoles as TGR5 agonists.
    Zhu J; Ye Y; Ning M; Mándi A; Feng Y; Zou Q; Kurtán T; Leng Y; Shen J
    ChemMedChem; 2013 Jul; 8(7):1210-23. PubMed ID: 23757200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The orphan receptor GPR88 blunts the signaling of opioid receptors and multiple striatal GPCRs.
    Laboute T; Gandía J; Pellissier LP; Corde Y; Rebeillard F; Gallo M; Gauthier C; Léauté A; Diaz J; Poupon A; Kieffer BL; Le Merrer J; Becker JA
    Elife; 2020 Jan; 9():. PubMed ID: 32003745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orphan Receptor GPR88 as an Emerging Neurotherapeutic Target.
    Ye N; Li B; Mao Q; Wold EA; Tian S; Allen JA; Zhou J
    ACS Chem Neurosci; 2019 Jan; 10(1):190-200. PubMed ID: 30540906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders?
    Logue SF; Grauer SM; Paulsen J; Graf R; Taylor N; Sung MA; Zhang L; Hughes Z; Pulito VL; Liu F; Rosenzweig-Lipson S; Brandon NJ; Marquis KL; Bates B; Pausch M
    Mol Cell Neurosci; 2009 Dec; 42(4):438-47. PubMed ID: 19796684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and pharmacological validation of a novel radioligand for the orphan GPR88 receptor.
    Decker AM; Rahman MT; Kormos CM; Hesk D; Darcq E; Kieffer BL; Jin C
    Bioorg Med Chem Lett; 2023 Jan; 80():129120. PubMed ID: 36587872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: Evidence for a key role for Gpr88 in multiple cortico-striatal-thalamic circuits.
    Thomson DM; Openshaw RL; Mitchell EJ; Kouskou M; Millan MJ; Mannoury la Cour C; Morris BJ; Pratt JA
    Genes Brain Behav; 2021 Feb; 20(2):e12710. PubMed ID: 33078498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The discovery of potent agonists for GPR88, an orphan GPCR, for the potential treatment of CNS disorders.
    Bi Y; Dzierba CD; Fink C; Garcia Y; Green M; Han J; Kwon S; Kumi G; Liang Z; Liu Y; Qiao Y; Zhang Y; Zipp G; Burford N; Ferrante M; Bertekap R; Lewis M; Cacace A; Westphal RS; Kimball D; Bronson JJ; Macor JE
    Bioorg Med Chem Lett; 2015 Apr; 25(7):1443-7. PubMed ID: 25754495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.