These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34387494)

  • 1. Magnetic Stiffening in 3D Cell Culture Matrices.
    Chen W; Zhang Y; Kumari J; Engelkamp H; Kouwer PHJ
    Nano Lett; 2021 Aug; 21(16):6740-6747. PubMed ID: 34387494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic nanocomposite hydrogel with tunable stiffness for probing cellular responses to matrix stiffening.
    Yan T; Rao D; Chen Y; Wang Y; Zhang Q; Wu S
    Acta Biomater; 2022 Jan; 138():112-123. PubMed ID: 34749001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid hydrogels support neural cell culture development under magnetic actuation at high frequency.
    Martínez-Ramírez J; Toldos-Torres M; Benayas E; Villar-Gómez N; Fernández-Méndez L; Espinosa FM; García R; Veintemillas-Verdaguer S; Morales MDP; Serrano MC
    Acta Biomater; 2024 Mar; 176():156-172. PubMed ID: 38281674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible dynamic mechanics of hydrogels for regulation of cellular behavior.
    Jeon O; Kim TH; Alsberg E
    Acta Biomater; 2021 Dec; 136():88-98. PubMed ID: 34563721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic Nanofibrous Hydrogels for Dynamic Control of Stem Cell Differentiation.
    Islam MS; Molley TG; Hung TT; Sathish CI; Putra VDL; Jalandhra GK; Ireland J; Li Y; Yi J; Kruzic JJ; Kilian KA
    ACS Appl Mater Interfaces; 2023 Aug; ():. PubMed ID: 37643902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels.
    Das RK; Gocheva V; Hammink R; Zouani OF; Rowan AE
    Nat Mater; 2016 Mar; 15(3):318-25. PubMed ID: 26618883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels.
    Kesselman D; Kossover O; Mironi-Harpaz I; Seliktar D
    Acta Biomater; 2013 Aug; 9(8):7630-9. PubMed ID: 23624218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoskeletal stiffening in synthetic hydrogels.
    de Almeida P; Jaspers M; Vaessen S; Tagit O; Portale G; Rowan AE; Kouwer PHJ
    Nat Commun; 2019 Feb; 10(1):609. PubMed ID: 30723211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically responsive composites: electron beam assisted magnetic nanoparticle arrest in gelatin hydrogels for bioactuation.
    Deuflhard M; Eberbeck D; Hietschold P; Wilharm N; Mühlberger M; Friedrich RP; Alexiou C; Mayr SG
    Phys Chem Chem Phys; 2019 Jul; 21(27):14654-14662. PubMed ID: 31215564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular Matrix Stiffening Induces a Malignant Phenotypic Transition in Breast Epithelial Cells.
    Stowers RS; Allen SC; Sanchez K; Davis CL; Ebelt ND; Van Den Berg C; Suggs LJ
    Cell Mol Bioeng; 2017 Feb; 10(1):114-123. PubMed ID: 31719853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechanics.
    Tran KA; Kraus E; Clark AT; Bennett A; Pogoda K; Cheng X; Ce Bers A; Janmey PA; Galie PA
    ACS Appl Mater Interfaces; 2021 May; 13(18):20947-20959. PubMed ID: 33909398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.
    van Berkum S; Dee JT; Philipse AP; Erné BH
    Int J Mol Sci; 2013 May; 14(5):10162-77. PubMed ID: 23673482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels.
    Juliar BA; Beamish JA; Busch ME; Cleveland DS; Nimmagadda L; Putnam AJ
    Biomaterials; 2020 Feb; 230():119634. PubMed ID: 31776019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of azobenzene-bearing hydrogel with photoswitchable mechanics driven by photo-induced phase transition for in vitro disease modeling.
    Homma K; Chang AC; Yamamoto S; Tamate R; Ueki T; Nakanishi J
    Acta Biomater; 2021 Sep; 132():103-113. PubMed ID: 33744500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast-relaxing hydrogels with reversibly tunable mechanics for dynamic cancer cell culture.
    Khine YY; Nguyen H; Afolabi F; Lin CC
    Biomater Adv; 2024 May; 159():213829. PubMed ID: 38531258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal Modulation of Stem Cell Activity Using Magnetoactive Hydrogels.
    Abdeen AA; Lee J; Bharadwaj NA; Ewoldt RH; Kilian KA
    Adv Healthc Mater; 2016 Oct; 5(19):2536-2544. PubMed ID: 27276521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures.
    Zimoch J; Padial JS; Klar AS; Vallmajo-Martin Q; Meuli M; Biedermann T; Wilson CJ; Rowan A; Reichmann E
    Acta Biomater; 2018 Apr; 70():129-139. PubMed ID: 29454158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.