These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 34388793)
1. Optofluidic modulator based on thermoplasmonically controlled liquid-liquid interface. Chalikkara F; Varanakkottu SN Opt Lett; 2021 Aug; 46(16):3993-3996. PubMed ID: 34388793 [TBL] [Abstract][Full Text] [Related]
2. Patterning of Metallic Nanoparticles over Solid Surfaces from Sessile Droplets by Thermoplasmonically Controlled Liquid Flow. Farzeena C; Varanakkottu SN Langmuir; 2022 Feb; 38(6):2003-2013. PubMed ID: 35119875 [TBL] [Abstract][Full Text] [Related]
3. Arbitrary control of the diffusion potential between a plasmonic metal and a semiconductor by an angstrom-thick interface dipole layer. Oshikiri T; Sawayanagi H; Nakamura K; Ueno K; Katase T; Ohta H; Misawa H J Chem Phys; 2020 Jan; 152(3):034705. PubMed ID: 31968952 [TBL] [Abstract][Full Text] [Related]
4. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface. Yang Z; Chen S; Fang P; Ren B; Girault HH; Tian Z Phys Chem Chem Phys; 2013 Apr; 15(15):5374-8. PubMed ID: 23376970 [TBL] [Abstract][Full Text] [Related]
5. Thermocapillary convection in double-layer fluid structures within a two-dimensional open cavity. Gupta NR; Haj-Hariri H; Borhan A J Colloid Interface Sci; 2007 Nov; 315(1):237-47. PubMed ID: 17631887 [TBL] [Abstract][Full Text] [Related]
6. Electrowetting-actuated optofluidic phase modulator. Zhang W; Zhao R; He Y; Ding W; Liang Z; Kong M; Chen T Opt Express; 2021 Jan; 29(2):797-804. PubMed ID: 33726308 [TBL] [Abstract][Full Text] [Related]
7. Thermocapillary migration in small-scale temperature gradients: application to optofluidic drop dispensing. Robert de Saint Vincent M; Delville JP Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026310. PubMed ID: 22463320 [TBL] [Abstract][Full Text] [Related]
9. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation. Nan F; Yan Z Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963 [TBL] [Abstract][Full Text] [Related]
10. Optofluidic variable optical path modulator. Wang QH; Xiao L; Liu C; Li L Sci Rep; 2019 May; 9(1):7082. PubMed ID: 31068638 [TBL] [Abstract][Full Text] [Related]
11. Turbulent transition of thermocapillary flow induced by water evaporation. Ward CA; Duan F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056308. PubMed ID: 15244933 [TBL] [Abstract][Full Text] [Related]
12. Macroscopic Au@PANI Core/Shell Nanoparticle Superlattice Monolayer Film with Dual-Responsive Plasmonic Switches. Lin H; Song L; Huang Y; Cheng Q; Yang Y; Guo Z; Su F; Chen T ACS Appl Mater Interfaces; 2020 Mar; 12(9):11296-11304. PubMed ID: 32043861 [TBL] [Abstract][Full Text] [Related]
13. Novel architecture of plasmon excitation based on self-assembled nanoparticle arrays for photovoltaics. Jo H; Sohn A; Shin KS; Kumar B; Kim JH; Kim DW; Kim SW ACS Appl Mater Interfaces; 2014 Jan; 6(2):1030-5. PubMed ID: 24328244 [TBL] [Abstract][Full Text] [Related]
14. Optofluidic transport and manipulation of plasmonic nanoparticles by thermocapillary convection. Winterer F; Maier CM; Pernpeintner C; Lohmüller T Soft Matter; 2018 Jan; 14(4):628-634. PubMed ID: 29265159 [TBL] [Abstract][Full Text] [Related]
16. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. Nan F; Yan Z ACS Nano; 2020 Jun; 14(6):7602-7609. PubMed ID: 32428394 [TBL] [Abstract][Full Text] [Related]
17. Double-layer thermocapillary convection in a differentially heated cavity. Gupta NR; Haj-Hariri H; Borhan A Ann N Y Acad Sci; 2006 Sep; 1077():395-414. PubMed ID: 17124137 [TBL] [Abstract][Full Text] [Related]
18. Au nanoparticles decorated C60 nanoparticle-based label-free electrochemiluminesence aptasensor via a novel "on-off-on" switch system. Zhao M; Zhuo Y; Chai YQ; Yuan R Biomaterials; 2015 Jun; 52():476-83. PubMed ID: 25818453 [TBL] [Abstract][Full Text] [Related]
19. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows. Rodrigo JA; Angulo M; Alieva T Light Sci Appl; 2020; 9():181. PubMed ID: 33133521 [TBL] [Abstract][Full Text] [Related]
20. Optical visualization of the velocity distribution in a laser-induced thermocapillary liquid flow. Costa GD Appl Opt; 1993 Apr; 32(12):2143-51. PubMed ID: 20820359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]