These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34388797)

  • 1. Generation and transmission of phase-stable coherent multi-band linear frequency modulated signals.
    Li B; Wang X; Wei W; Xie W; Dong Y
    Opt Lett; 2021 Aug; 46(16):4005-4008. PubMed ID: 34388797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation.
    Chen W; Zhu D; Xie C; Zhou T; Zhong X; Pan S
    Opt Express; 2018 Dec; 26(25):32491-32499. PubMed ID: 30645415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonic generation of programmable coherent linear frequency modulated signal and its application in X-band radar system.
    Cheng R; Wei W; Xie W; Dong Y
    Opt Express; 2019 Dec; 27(26):37469-37480. PubMed ID: 31878526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonics-based multi-band linearly frequency modulated signal generation and anti-chromatic dispersion transmission.
    Zhang K; Zhao S; Wen A; Zhai W; Lin T; Li X; Wang G; Li H
    Opt Express; 2020 Mar; 28(6):8350-8362. PubMed ID: 32225462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonics-based coherent wideband linear frequency modulation pulsed signal generation.
    Tong Y; Han D; Cheng R; Liu Z; Xie W; Qin J; Dong Y
    Opt Lett; 2018 Mar; 43(5):1023-1026. PubMed ID: 29489771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple multi-band linearly frequency-modulated signal generation with a multiplying bandwidth based on a gain-switching laser.
    Wu G; Zheng J; Pu T; Li J; Zhang X; Chen S; Zhao J; Zhang Y; Chen X
    Appl Opt; 2023 Mar; 62(7):1822-1828. PubMed ID: 37132931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiband LFM waveform generation and band-selection using stimulated Brillouin scattering.
    Dhawan R; Parida D; Parihar R; Jha M; Choudhary A
    Appl Opt; 2023 Sep; 62(25):6737-6745. PubMed ID: 37706806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable multi-band microwave photonic radar transmitter with a wide operating frequency range.
    Zhang X; Sun Q; Yang J; Cao J; Li W
    Opt Express; 2019 Nov; 27(24):34519-34529. PubMed ID: 31878640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic super-resolution millimeter-wave joint radar-communication system using self-coherent detection.
    Bai W; Li P; Zou X; Zhong N; Pan W; Yan L; Luo B
    Opt Lett; 2023 Feb; 48(3):608-611. PubMed ID: 36723544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wideband reconfigurable signal generation based on recirculating frequency-shifting using an optoelectronic loop.
    Yin Z; Zhang X; Liu C; Zeng H; Li W
    Opt Express; 2021 Aug; 29(18):28643-28651. PubMed ID: 34614990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic approach to flexible multi-band linearly frequency modulated microwave signals generation.
    Men Y; Wen A; Li Y; Tong Y
    Opt Lett; 2021 Apr; 46(7):1696-1699. PubMed ID: 33793521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of linear frequency-modulated signals with improved time-bandwidth product based on an optical frequency comb.
    Wang X; Ma J; Zhang Q; Xin X
    Appl Opt; 2019 Apr; 58(12):3222-3228. PubMed ID: 31044800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonics-based wideband distributed coherent aperture radar system.
    Xiao X; Li S; Peng S; Wu D; Xue X; Zheng X; Zhou B
    Opt Express; 2018 Dec; 26(26):33783-33796. PubMed ID: 30650811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.
    Yang X; Xu K; Yin J; Dai Y; Yin F; Li J; Lu H; Liu T; Ji Y
    Opt Express; 2014 Jan; 22(1):869-77. PubMed ID: 24515046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple band frequency generator based on an optoelectronic oscillator with low phase noise.
    Chen Z; Dai J; Zhou Y; Yin F; Zhang T; Li J; Dai Y; Xu K
    Opt Express; 2017 Aug; 25(17):20749-20756. PubMed ID: 29041753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-flat optical frequency comb generation based on a polarization modulator and a Butterworth band-stop filter.
    Guo Y; Liu Y; Li D; Wu S
    Appl Opt; 2021 Jul; 60(19):5540-5546. PubMed ID: 34263842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic generation of phase-stable and wideband chirped microwave signals based on phase-locked dual optical frequency combs.
    Tong Y; Zhou Q; Han D; Li B; Xie W; Liu Z; Qin J; Wang X; Dong Y; Hu W
    Opt Lett; 2016 Aug; 41(16):3787-90. PubMed ID: 27519089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental demonstration of multi-Gbps multi sub-bands FBMC transmission in mm-wave radio over a fiber system.
    Parajuli HN; Shams H; Gonzalez LG; Udvary E; Renaud C; Mitchell J
    Opt Express; 2018 Mar; 26(6):7306-7312. PubMed ID: 29609287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband radio-frequency signal synthesis by photonic-assisted channelization.
    Yin F; Yin Z; Xie X; Dai Y; Xu K
    Opt Express; 2021 Jun; 29(12):17839-17848. PubMed ID: 34154058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental generation of linearly chirped 350  GHz band pulses with a bandwidth beyond 60  GHz.
    Zhang H; Wang S; Jia S; Yu X; Jin X; Zheng S; Chi H; Zhang X
    Opt Lett; 2017 Dec; 42(24):5242-5245. PubMed ID: 29240183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.