These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34388800)
1. Design and characteristics of tunable in-plane optofluidic lens actuated by viscous force. Zhang H; Zhang Z; Song X; Zhao R; Zhang Z; Jia D; Liu T Opt Lett; 2021 Aug; 46(16):4017-4020. PubMed ID: 34388800 [TBL] [Abstract][Full Text] [Related]
2. Dielectrophoresis-actuated in-plane optofluidic lens with tunability of focal length from negative to positive. Chen Q; Li T; Zhu Y; Yu W; Zhang X Opt Express; 2018 Mar; 26(6):6532-6541. PubMed ID: 29609341 [TBL] [Abstract][Full Text] [Related]
3. Aberration-free aspherical in-plane tunable liquid lenses by regulating local curvatures. Chen Q; Tong X; Zhu Y; Tsoi CC; Jia Y; Li Z; Zhang X Lab Chip; 2020 Mar; 20(5):995-1001. PubMed ID: 32025666 [TBL] [Abstract][Full Text] [Related]
4. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex. Chen Q; Li T; Li Z; Lu C; Zhang X Lab Chip; 2018 Dec; 18(24):3849-3854. PubMed ID: 30420975 [TBL] [Abstract][Full Text] [Related]
5. Optofluidic lens based on electrowetting liquid piston. Li LY; Yuan RY; Wang JH; Li L; Wang QH Sci Rep; 2019 Sep; 9(1):13062. PubMed ID: 31506551 [TBL] [Abstract][Full Text] [Related]
6. Optofluidic tunable lenses using laser-induced thermal gradient. Chen Q; Jian A; Li Z; Zhang X Lab Chip; 2016 Jan; 16(1):104-11. PubMed ID: 26584422 [TBL] [Abstract][Full Text] [Related]
7. Optofluidic lens with tunable focal length and asphericity. Mishra K; Murade C; Carreel B; Roghair I; Oh JM; Manukyan G; van den Ende D; Mugele F Sci Rep; 2014 Sep; 4():6378. PubMed ID: 25224851 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional optofluidic lens with beam steering. Liu C; Wang D; Wang QH; Xing Y Opt Express; 2020 Mar; 28(5):7734-7745. PubMed ID: 32225994 [TBL] [Abstract][Full Text] [Related]
9. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. Weeber HA; Piers PA J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466 [TBL] [Abstract][Full Text] [Related]
11. Hybrid driving variable-focus optofluidic lens. Wang JH; Tang WP; Li LY; Xiao L; Zhou X; Wang QH Opt Express; 2019 Nov; 27(24):35203-35215. PubMed ID: 31878693 [TBL] [Abstract][Full Text] [Related]
12. Optofluidic lens with low spherical and low field curvature aberrations. Zhao HT; Yang Y; Chin LK; Chen HF; Zhu WM; Zhang JB; Yap PH; Liedberg B; Wang K; Wang G; Ser W; Liu AQ Lab Chip; 2016 Apr; 16(9):1617-24. PubMed ID: 27050492 [TBL] [Abstract][Full Text] [Related]
13. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens. Mishra K; Narayanan A; Mugele F Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717 [TBL] [Abstract][Full Text] [Related]
14. An electrokinetically tunable optofluidic bi-concave lens. Li H; Song C; Luong TD; Nguyen NT; Wong TN Lab Chip; 2012 Oct; 12(19):3680-7. PubMed ID: 22777136 [TBL] [Abstract][Full Text] [Related]
15. Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure. Mao X; Stratton ZI; Nawaz AA; Lin SC; Huang TJ Biomicrofluidics; 2010 Dec; 4(4):43007. PubMed ID: 21267439 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of spherical aberration correction based on contact lens power. Koh S; Maeda N; Hamada T; Nishida K Cont Lens Anterior Eye; 2014 Aug; 37(4):273-7. PubMed ID: 24439628 [TBL] [Abstract][Full Text] [Related]
17. Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens. Lee SL; Yang CF Opt Express; 2008 Nov; 16(24):19995-20007. PubMed ID: 19030086 [TBL] [Abstract][Full Text] [Related]
18. Displaceable and focus-tunable electrowetting optofluidic lens. Li L; Wang JH; Wang QH; Wu ST Opt Express; 2018 Oct; 26(20):25839-25848. PubMed ID: 30469679 [TBL] [Abstract][Full Text] [Related]