These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34388813)

  • 1. Monolithic all-silicon flat lens for broadband LWIR imaging.
    Kigner O; Meem M; Baker B; Banerji S; Hon PWC; Sensale-Rodriguez B; Menon R
    Opt Lett; 2021 Aug; 46(16):4069-4071. PubMed ID: 34388813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband lightweight flat lenses for long-wave infrared imaging.
    Meem M; Banerji S; Majumder A; Vasquez FG; Sensale-Rodriguez B; Menon R
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21375-21378. PubMed ID: 31591227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lens.
    Meem M; Majumder A; Banerji S; Garcia JC; Kigner OB; Hon PWC; Sensale-Rodriguez B; Menon R
    Opt Express; 2021 Jun; 29(13):20715-20723. PubMed ID: 34266154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband imaging with one planar diffractive lens.
    Mohammad N; Meem M; Shen B; Wang P; Menon R
    Sci Rep; 2018 Feb; 8(1):2799. PubMed ID: 29434257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilevel diffractive lens in the MWIR with extended depth-of-focus and wide field-of-view.
    Hayward TM; Qadri SN; Brimhall N; Santiago F; Christophersen M; Dunay C; Espinola RL; Martin H; Cheung CCT; Menon R
    Opt Express; 2023 May; 31(10):15384-15391. PubMed ID: 37157641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of the all-silicon long-wavelength infrared achromatic metalens based on deep silicon etching.
    Shan D; Xu N; Gao J; Song N; Liu H; Tang Y; Feng X; Wang Y; Zhao Y; Chen X; Sun Q
    Opt Express; 2022 Apr; 30(8):13616-13629. PubMed ID: 35472971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achromatic hybrid refractive-diffractive lens with extended depth of focus.
    Flores A; Wang MR; Yang JJ
    Appl Opt; 2004 Oct; 43(30):5618-30. PubMed ID: 15534993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a Hybrid Refractive/Diffractive Lens System for Broadband UV.
    Hu Y; Huo J; Cheng B
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-order diffractive engineered surface lenses.
    Milster TD; Sik Kim Y; Wang Z; Purvin K
    Appl Opt; 2020 Sep; 59(26):7900-7906. PubMed ID: 32976462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneously Integrated Graphene/Silicon/Halide Waveguide Photodetectors toward Chip-Scale Zero-Bias Long-Wave Infrared Spectroscopic Sensing.
    Ma Y; Chang Y; Dong B; Wei J; Liu W; Lee C
    ACS Nano; 2021 Jun; 15(6):10084-10094. PubMed ID: 34060811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 degrees micro-reflector.
    Lan HC; Hsiao HL; Chang CC; Hsu CH; Wang CM; Wu ML
    Opt Express; 2009 Nov; 17(23):20938-44. PubMed ID: 19997331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent infrared micro-lens array based on all-silicon metasurfaces.
    Liu M; Fan Q; Yu L; Xu T
    Opt Express; 2019 Apr; 27(8):10738-10744. PubMed ID: 31052927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.
    Wang P; Mohammad N; Menon R
    Sci Rep; 2016 Feb; 6():21545. PubMed ID: 26868264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of quarter-wave retarders over finite spectral and angular bandwidths for infrared polarimetric-imaging applications.
    Wadsworth SL; Boreman GD
    Appl Opt; 2011 Dec; 50(36):6682-8. PubMed ID: 22193200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity.
    Hou E; Meng D; Liang Z; Xiong Y; Yang F; Tang Y; Fan Y; Qin Z; Shi X; Zhang Y; Liang J; Chen C; Lai J
    Appl Opt; 2020 Mar; 59(9):2695-2700. PubMed ID: 32225817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging.
    Lan G; Mauger TF; Li G
    Biomed Opt Express; 2015 Sep; 6(9):3362-77. PubMed ID: 26417508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin high numerical aperture metalens.
    Kotlyar VV; Nalimov AG; Stafeev SS; Hu C; O'Faolain L; Kotlyar MV; Gibson D; Song S
    Opt Express; 2017 Apr; 25(7):8158-8167. PubMed ID: 28380931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifocal flat lens with different imaging characteristics for a dual-sensor imaging system.
    Zhou Y; Kuang FL; Li R; Li L
    Sci Rep; 2022 Nov; 12(1):18996. PubMed ID: 36347882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Metalens with a Near-Unity Numerical Aperture.
    Paniagua-Domínguez R; Yu YF; Khaidarov E; Choi S; Leong V; Bakker RM; Liang X; Fu YH; Valuckas V; Krivitsky LA; Kuznetsov AI
    Nano Lett; 2018 Mar; 18(3):2124-2132. PubMed ID: 29485885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity.
    Zhou Y; Liang Z; Qin Z; Hou E; Shi X; Zhang Y; Xiong Y; Tang Y; Fan Y; Yang F; Liang J; Chen C; Lai J
    Opt Express; 2020 Jan; 28(2):1279-1290. PubMed ID: 32121842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.