These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 34388872)

  • 1. Lignocellulosic biomass-based pyrolysis: A comprehensive review.
    K N Y; T PD; P S; S K; R YK; Varjani S; AdishKumar S; Kumar G; J RB
    Chemosphere; 2022 Jan; 286(Pt 2):131824. PubMed ID: 34388872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass.
    Dai L; Wang Y; Liu Y; He C; Ruan R; Yu Z; Jiang L; Zeng Z; Wu Q
    Sci Total Environ; 2020 Dec; 749():142386. PubMed ID: 33370899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review.
    Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK
    Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials.
    Tawalbeh M; Al-Othman A; Salamah T; Alkasrawi M; Martis R; El-Rub ZA
    J Environ Manage; 2021 Dec; 299():113597. PubMed ID: 34492435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative investigation into the formation behaviors of char, liquids and gases during pyrolysis of pinewood and lignocellulosic components.
    Shi X; Wang J
    Bioresour Technol; 2014 Oct; 170():262-269. PubMed ID: 25151069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the degradation products of lignocellulosic biomass by using tandem mass spectrometry experiments, model compounds, and quantum chemical calculations.
    Guthrie JD; Rowell CER; Anyaeche RO; Alzarieni KZ; Kenttämaa HI
    Mass Spectrom Rev; 2024; 43(2):369-408. PubMed ID: 36727592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.
    Carrier M; Joubert JE; Danje S; Hugo T; Görgens J; Knoetze JH
    Bioresour Technol; 2013 Dec; 150():129-38. PubMed ID: 24161551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z; Wang S; Zhao J; Chen L; Meng H
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.
    Wang H; Elliott DC; French RJ; Deutch S; Iisa K
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on the role of susceptors in the recovery of valuable renewable carbon products from microwave-assisted pyrolysis of lignocellulosic and algal biomasses: Prospects and challenges.
    Suriapparao DV; Tanneru HK; Reddy BR
    Environ Res; 2022 Dec; 215(Pt 3):114378. PubMed ID: 36150436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products.
    Palazzolo MA; Garcia-Perez M
    Biotechnol Adv; 2022; 54():107791. PubMed ID: 34192583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives for Thermochemical Conversions of Lignocellulosic Biomass.
    Stöcker M
    Small; 2024 Sep; 20(39):e2302495. PubMed ID: 37344347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.
    Shen Y; Jarboe L; Brown R; Wen Z
    Biotechnol Adv; 2015 Dec; 33(8):1799-813. PubMed ID: 26492814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review.
    Allende S; Brodie G; Jacob MV
    Environ Res; 2023 Jun; 226():115619. PubMed ID: 36906271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquefaction of lignocellulosic biomass for methane production: A review.
    Ghimire N; Bakke R; Bergland WH
    Bioresour Technol; 2021 Jul; 332():125068. PubMed ID: 33849751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic fast pyrolysis of lignocellulosic biomass.
    Liu C; Wang H; Karim AM; Sun J; Wang Y
    Chem Soc Rev; 2014 Nov; 43(22):7594-623. PubMed ID: 24801125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.