BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34389243)

  • 1. Clinical implementation of deep-learning based auto-contouring tools-Experience of three French radiotherapy centers.
    Robert C; Munoz A; Moreau D; Mazurier J; Sidorski G; Gasnier A; Beldjoudi G; Grégoire V; Deutsch E; Meyer P; Simon L
    Cancer Radiother; 2021 Oct; 25(6-7):607-616. PubMed ID: 34389243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of deep learning-based auto-segmentation for radiotherapy planning structures: a workflow study at two cancer centers.
    Wong J; Huang V; Wells D; Giambattista J; Giambattista J; Kolbeck C; Otto K; Saibishkumar EP; Alexander A
    Radiat Oncol; 2021 Jun; 16(1):101. PubMed ID: 34103062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of deep learning to auto-delineation of target volumes and organs at risk in radiotherapy.
    Chen M; Wu S; Zhao W; Zhou Y; Zhou Y; Wang G
    Cancer Radiother; 2022 May; 26(3):494-501. PubMed ID: 34711488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training, validation, and clinical implementation of a deep-learning segmentation model for radiotherapy of loco-regional breast cancer.
    Almberg SS; Lervåg C; Frengen J; Eidem M; Abramova TM; Nordstrand CS; Alsaker MD; Tøndel H; Raj SX; Wanderås AD
    Radiother Oncol; 2022 Aug; 173():62-68. PubMed ID: 35618100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-segmentation of important centers of growth in the pediatric skeleton to consider during radiation therapy based on deep learning.
    Qiu W; Zhang W; Ma X; Kong Y; Shi P; Fu M; Wang D; Hu M; Zhou X; Dong Q; Zhou Q; Zhu J
    Med Phys; 2023 Jan; 50(1):284-296. PubMed ID: 36047281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm.
    Claessens M; Vanreusel V; De Kerf G; Mollaert I; Löfman F; Gooding MJ; Brouwer C; Dirix P; Verellen D
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35561701
    [No Abstract]   [Full Text] [Related]  

  • 9. ESTRO ACROP consensus guideline on CT- and MRI-based target volume delineation for primary radiation therapy of localized prostate cancer.
    Salembier C; Villeirs G; De Bari B; Hoskin P; Pieters BR; Van Vulpen M; Khoo V; Henry A; Bossi A; De Meerleer G; Fonteyne V
    Radiother Oncol; 2018 Apr; 127(1):49-61. PubMed ID: 29496279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer.
    Ma CY; Zhou JY; Xu XT; Guo J; Han MF; Gao YZ; Du H; Stahl JN; Maltz JS
    J Appl Clin Med Phys; 2022 Feb; 23(2):e13470. PubMed ID: 34807501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study.
    Choi MS; Chang JS; Kim K; Kim JH; Kim TH; Kim S; Cha H; Cho O; Choi JH; Kim M; Kim J; Kim TG; Yeo SG; Chang AR; Ahn SJ; Choi J; Kang KM; Kwon J; Koo T; Kim MY; Choi SH; Jeong BK; Jang BS; Jo IY; Lee H; Kim N; Park HJ; Im JH; Lee SW; Cho Y; Lee SY; Chang JH; Chun J; Lee EM; Kim JS; Shin KH; Kim YB
    Breast; 2024 Feb; 73():103599. PubMed ID: 37992527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of deep learning in radiation therapy for cancer.
    Wen X; Zhao C; Zhao B; Yuan M; Chang J; Liu W; Meng J; Shi L; Yang S; Zeng J; Yang Y
    Cancer Radiother; 2024 Apr; 28(2):208-217. PubMed ID: 38519291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-segmentation of organs at risk for head and neck radiotherapy planning: From atlas-based to deep learning methods.
    Vrtovec T; Močnik D; Strojan P; Pernuš F; Ibragimov B
    Med Phys; 2020 Sep; 47(9):e929-e950. PubMed ID: 32510603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence for Radiotherapy Auto-Contouring: Current Use, Perceptions of and Barriers to Implementation.
    Hindocha S; Zucker K; Jena R; Banfill K; Mackay K; Price G; Pudney D; Wang J; Taylor A
    Clin Oncol (R Coll Radiol); 2023 Apr; 35(4):219-226. PubMed ID: 36725406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardizing Normal Tissue Contouring for Radiation Therapy Treatment Planning: An ASTRO Consensus Paper.
    Wright JL; Yom SS; Awan MJ; Dawes S; Fischer-Valuck B; Kudner R; Mailhot Vega R; Rodrigues G
    Pract Radiat Oncol; 2019 Mar; 9(2):65-72. PubMed ID: 30576843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning.
    Wong J; Fong A; McVicar N; Smith S; Giambattista J; Wells D; Kolbeck C; Giambattista J; Gondara L; Alexander A
    Radiother Oncol; 2020 Mar; 144():152-158. PubMed ID: 31812930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NRG Oncology Assessment of Artificial Intelligence Deep Learning-Based Auto-segmentation for Radiation Therapy: Current Developments, Clinical Considerations, and Future Directions.
    Rong Y; Chen Q; Fu Y; Yang X; Al-Hallaq HA; Wu QJ; Yuan L; Xiao Y; Cai B; Latifi K; Benedict SH; Buchsbaum JC; Qi XS
    Int J Radiat Oncol Biol Phys; 2024 May; 119(1):261-280. PubMed ID: 37972715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four years with FALCON - an ESTRO educational project: achievements and perspectives.
    Eriksen JG; Salembier C; Rivera S; De Bari B; Berger D; Mantello G; Müller AC; Martin AN; Pasini D; Tanderup K; Palmu M; Verfaillie C; Pötter R; Valentini V;
    Radiother Oncol; 2014 Jul; 112(1):145-9. PubMed ID: 25070586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of MR based deep learning auto-contouring for planning head and neck radiotherapy.
    Hague C; McPartlin A; Lee LW; Hughes C; Mullan D; Beasley W; Green A; Price G; Whitehurst P; Slevin N; van Herk M; West C; Chuter R
    Radiother Oncol; 2021 May; 158():112-117. PubMed ID: 33636229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of medical dosimetrists' perceptions of efficiency and consistency of auto-contouring software.
    Coffey A; Moreno J; Lenards N; Hunzeker A; Tobler M
    Med Dosim; 2022 Winter; 47(4):312-317. PubMed ID: 35842363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.