BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 34389465)

  • 1. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits.
    Shirejini SZ; Inci F
    Biotechnol Adv; 2022; 54():107814. PubMed ID: 34389465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Extracellular Vesicles by a Microfluidic Platform to Diagnose and Monitor Pancreatic Cancer.
    Sancho-Albero M; Sebastián V
    Methods Mol Biol; 2023; 2679():181-191. PubMed ID: 37300616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically driven microfluidic platforms for exosome manipulation and characterization.
    Diaz-Armas GG; Cervantes-Gonzalez AP; Martinez-Duarte R; Perez-Gonzalez VH
    Electrophoresis; 2022 Jan; 43(1-2):327-339. PubMed ID: 34717000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global trend in exosome isolation and application: an update concept in management of diseases.
    Omrani M; Beyrampour-Basmenj H; Jahanban-Esfahlan R; Talebi M; Raeisi M; Serej ZA; Akbar-Gharalari N; Khodakarimi S; Wu J; Ebrahimi-Kalan A
    Mol Cell Biochem; 2024 Mar; 479(3):679-691. PubMed ID: 37166542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exosome isolation using nanostructures and microfluidic devices.
    Le MN; Fan ZH
    Biomed Mater; 2021 Feb; 16(2):022005. PubMed ID: 33477118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in Microfluidics-Based Exosome Separation and Detection Technologies for Diagnostic Applications.
    Lin S; Yu Z; Chen D; Wang Z; Miao J; Li Q; Zhang D; Song J; Cui D
    Small; 2020 Mar; 16(9):e1903916. PubMed ID: 31663295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
    Yang F; Liao X; Tian Y; Li G
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Holistic Review of the State-of-the-Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook.
    Ding L; Yang X; Gao Z; Effah CY; Zhang X; Wu Y; Qu L
    Small; 2021 Jul; 17(29):e2007174. PubMed ID: 34047052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Microfluidic-Based Exosome Isolation and Detection for Tumor Therapy.
    Wang J; Ma P; Kim DH; Liu BF; Demirci U
    Nano Today; 2021 Apr; 37():. PubMed ID: 33777166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Isolation of Exosomes Using Microfluidic Technologies.
    Hassanpour Tamrin S; Sanati Nezhad A; Sen A
    ACS Nano; 2021 Nov; 15(11):17047-17079. PubMed ID: 34723478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Based Exosome Analysis for Liquid Biopsy.
    Lin B; Lei Y; Wang J; Zhu L; Wu Y; Zhang H; Wu L; Zhang P; Yang C
    Small Methods; 2021 Mar; 5(3):e2001131. PubMed ID: 34927834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microfluidic strategies for separation and analysis of circulating exosomes].
    Chen W; Gan Z; Qin J
    Se Pu; 2021 Sep; 39(9):968-980. PubMed ID: 34486836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows.
    Liu C; Guo J; Tian F; Yang N; Yan F; Ding Y; Wei J; Hu G; Nie G; Sun J
    ACS Nano; 2017 Jul; 11(7):6968-6976. PubMed ID: 28679045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Microfluidic Device for Exosome Isolation in Point-of-Care Settings.
    Ramnauth N; Neubarth E; Makler-Disatham A; Sher M; Soini S; Merk V; Asghar W
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Approaches for Affinity-Based Exosome Separation.
    Theel EK; Schwaminger SP
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine.
    Contreras-Naranjo JC; Wu HJ; Ugaz VM
    Lab Chip; 2017 Oct; 17(21):3558-3577. PubMed ID: 28832692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges.
    Singh K; Nalabotala R; Koo KM; Bose S; Nayak R; Shiddiky MJA
    Analyst; 2021 Jun; 146(12):3731-3749. PubMed ID: 33988193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and Profiling of Circulating Tumor-Associated Exosomes Using Extracellular Vesicular Lipid-Protein Binding Affinity Based Microfluidic Device.
    Kang YT; Purcell E; Palacios-Rolston C; Lo TW; Ramnath N; Jolly S; Nagrath S
    Small; 2019 Nov; 15(47):e1903600. PubMed ID: 31588683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
    Wu M; Ouyang Y; Wang Z; Zhang R; Huang PH; Chen C; Li H; Li P; Quinn D; Dao M; Suresh S; Sadovsky Y; Huang TJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10584-10589. PubMed ID: 28923936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.