BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 34389508)

  • 1. Fast and Accurate Ophthalmic Medication Bottle Identification Using Deep Learning on a Smartphone Device.
    Tran TT; Richardson AJW; Chen VM; Lin KY
    Ophthalmol Glaucoma; 2022; 5(2):188-194. PubMed ID: 34389508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated detection of leukemia by pretrained deep neural networks and transfer learning: A comparison.
    Anilkumar KK; Manoj VJ; Sagi TM
    Med Eng Phys; 2021 Dec; 98():8-19. PubMed ID: 34848042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for Classification of Pediatric Otitis Media.
    Wu Z; Lin Z; Li L; Pan H; Chen G; Fu Y; Qiu Q
    Laryngoscope; 2021 Jul; 131(7):E2344-E2351. PubMed ID: 33369754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM.
    Srinivasu PN; SivaSai JG; Ijaz MF; Bhoi AK; Kim W; Kang JJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Convolutional Neural Network for Real Time Classification, Identification, and Labelling of Vocal Cord and Tracheal Using Laryngoscopy and Bronchoscopy Video.
    Matava C; Pankiv E; Raisbeck S; Caldeira M; Alam F
    J Med Syst; 2020 Jan; 44(2):44. PubMed ID: 31897740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.
    Hu W; Zhang Y; Li L
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate Identification of the Trabecular Meshwork under Gonioscopic View in Real Time Using Deep Learning.
    Lin KY; Urban G; Yang MC; Lee LC; Lu DW; Alward WLM; Baldi P
    Ophthalmol Glaucoma; 2022; 5(4):402-412. PubMed ID: 34798322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network.
    Cho BJ; Bang CS; Park SW; Yang YJ; Seo SI; Lim H; Shin WG; Hong JT; Yoo YT; Hong SH; Choi JH; Lee JJ; Baik GH
    Endoscopy; 2019 Dec; 51(12):1121-1129. PubMed ID: 31443108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model.
    Akay M; Du Y; Sershen CL; Wu M; Chen TY; Assassi S; Mohan C; Akay YM
    IEEE Open J Eng Med Biol; 2021; 2():104-110. PubMed ID: 35402975
    [No Abstract]   [Full Text] [Related]  

  • 10. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network.
    Chen R; Wang M; Lai Y
    PLoS One; 2020; 15(7):e0235783. PubMed ID: 32634167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid morphological-convolutional neural networks for computer-aided diagnosis.
    Canales-Fiscal MR; Tamez-Peña JG
    Front Artif Intell; 2023; 6():1253183. PubMed ID: 37795497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human skin type classification using image processing and deep learning approaches.
    Saiwaeo S; Arwatchananukul S; Mungmai L; Preedalikit W; Aunsri N
    Heliyon; 2023 Nov; 9(11):e21176. PubMed ID: 38027689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology.
    Dursun G; Tandale SB; Gulakala R; Eschweiler J; Tohidnezhad M; Markert B; Stoffel M
    Comput Methods Programs Biomed; 2021 Sep; 208():106279. PubMed ID: 34343743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Automated Identification of Phases in Videos of Cataract Surgery Using Machine Learning and Deep Learning Techniques.
    Yu F; Silva Croso G; Kim TS; Song Z; Parker F; Hager GD; Reiter A; Vedula SS; Ali H; Sikder S
    JAMA Netw Open; 2019 Apr; 2(4):e191860. PubMed ID: 30951163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time Detection of Aortic Valve in Echocardiography using Convolutional Neural Networks.
    Nizar MHA; Chan CK; Khalil A; Yusof AKM; Lai KW
    Curr Med Imaging; 2020; 16(5):584-591. PubMed ID: 32484093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG; Lv J
    IEEE Trans Cybern; 2020 Sep; 50(9):3840-3854. PubMed ID: 32324588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.