These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34389717)

  • 1. Tuning the performance of a micrometer-sized Stirling engine through reservoir engineering.
    Roy N; Leroux N; Sood AK; Ganapathy R
    Nat Commun; 2021 Aug; 12(1):4927. PubMed ID: 34389717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing Viscoelasticity to Suppress Irreversibility Buildup in a Colloidal Stirling Engine.
    Roy N; Sood AK; Ganapathy R
    Phys Rev Lett; 2023 Dec; 131(23):238201. PubMed ID: 38134791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming power-efficiency tradeoff in a micro heat engine by engineered system-bath interactions.
    Krishnamurthy S; Ganapathy R; Sood AK
    Nat Commun; 2023 Oct; 14(1):6842. PubMed ID: 37891165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colossal Power Extraction from Active Cyclic Brownian Information Engines.
    Paneru G; Dutta S; Pak HK
    J Phys Chem Lett; 2022 Aug; 13(30):6912-6918. PubMed ID: 35866740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Thermal, Mechanical, and Materials Framework for a Shape Memory Alloy Heat Engine for Thermal Management.
    Chikhareva M; Vaidyanathan R
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carnot, Stirling, and Ericsson stochastic heat engines: Efficiency at maximum power.
    Contreras-Vergara O; Sánchez-Salas N; Valencia-Ortega G; Jiménez-Aquino JI
    Phys Rev E; 2023 Jul; 108(1-1):014123. PubMed ID: 37583186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-fractional quantum heat engine based on level degeneracy.
    Aydiner E
    Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two coupled, driven Ising spin systems working as an engine.
    Basu D; Nandi J; Jayannavar AM; Marathe R
    Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta Type Stirling Engine. Schmidt and Finite Physical Dimensions Thermodynamics Methods Faced to Experiments.
    Dobre C; Grosu L; Costea M; Constantin M
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic analysis of a gamma type Stirling engine in an energy recovery system.
    Sowale A; Kolios AJ; Fidalgo B; Somorin T; Parker A; Williams L; Collins M; McAdam E; Tyrrel S
    Energy Convers Manag; 2018 Jun; 165():528-540. PubMed ID: 29861520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermoacoustic-Stirling heat engine: detailed study.
    Backhaus S; Swift GW
    J Acoust Soc Am; 2000 Jun; 107(6):3148-66. PubMed ID: 10875360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Work output and efficiency at maximum power of linear irreversible heat engines operating with a finite-sized heat source.
    Izumida Y; Okuda K
    Phys Rev Lett; 2014 May; 112(18):180603. PubMed ID: 24856684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction.
    Lee S; Ha M; Park JM; Jeong H
    Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine.
    Qi C; Ding Z; Chen L; Ge Y; Feng H
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooling Cycle Optimization for a Vuilleumier Refrigerator.
    Paul R; Khodja A; Fischer A; Hoffmann KH
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Material Change on Stirnol Engine: A Combination of NiTiNOL (Shape Memory Alloy) and Gamma Stirling Engine.
    Arif H; Shah A; Ratlamwala TAH; Kamal K; Khan MA
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of a minimal interacting heat engine: Comparison between engine designs.
    Hawthorne F; Cleuren B; Fiore CE
    Phys Rev E; 2024 Jun; 109(6-1):064120. PubMed ID: 39020975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K
    Phys Rev E; 2022 Jul; 106(1-1):014114. PubMed ID: 35974499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.