These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34389957)
1. Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Rashad AM Environ Sci Pollut Res Int; 2022 Jan; 29(3):3784-3793. PubMed ID: 34389957 [TBL] [Abstract][Full Text] [Related]
2. Examining the Workability, Mechanical, and Thermal Characteristics of Eco-Friendly, Structural Self-Compacting Lightweight Concrete Enhanced with Fly Ash and Silica Fume. Akbulut ZF; Yavuz D; Tawfik TA; Smarzewski P; Guler S Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063795 [TBL] [Abstract][Full Text] [Related]
3. Preparation and Properties of Foam Concrete Incorporating Fly Ash. Zhang D; Ding S; Ma Y; Yang Q Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143598 [TBL] [Abstract][Full Text] [Related]
4. Preparation and Properties of Lightweight Geopolymer by Bio-Based Foaming Agent. Wang T; Chen Y; Jing X; Wang X; Zhang L; Yang P Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998249 [TBL] [Abstract][Full Text] [Related]
5. A novel aerogel from thermal power plant waste for thermal and acoustic insulation applications. Duong HM; Ling NRB; Thai QB; Le DK; Nguyen PTT; Goh XY; Phan-Thien N Waste Manag; 2021 Apr; 124():1-7. PubMed ID: 33592320 [TBL] [Abstract][Full Text] [Related]
6. Development of Alkali Activated Inorganic Foams Based on Construction and Demolition Wastes for Thermal Insulation Applications. Boros A; Erdei G; Korim T Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297199 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of metakaolin-based geopolymer foamed materials using municipal solid waste incineration fly ash as a foaming agent. Tian X; Liu K; Yang X; Jiang T; Chen B; Tian Z; Wu J; Xia L; Huang D; Peng H Waste Manag; 2023 Sep; 169():101-111. PubMed ID: 37421822 [TBL] [Abstract][Full Text] [Related]
8. Recycled gypsum board acted as a mineral swelling agent for improving thermal conductivity characteristics in manufacturing of green lightweight building brick. Chiang KY; Yen HR; Lu CH Environ Sci Pollut Res Int; 2019 Nov; 26(33):34205-34219. PubMed ID: 30523532 [TBL] [Abstract][Full Text] [Related]
9. A review of utilization of industrial waste materials as cement replacement in pervious concrete: An alternative approach to sustainable pervious concrete production. Khankhaje E; Kim T; Jang H; Kim CS; Kim J; Rafieizonooz M Heliyon; 2024 Feb; 10(4):e26188. PubMed ID: 38434066 [TBL] [Abstract][Full Text] [Related]
10. Microstructure, Compressive Strength and Sound Insulation Property of Fly Ash-Based Geopolymeric Foams with Silica Fume as Foaming Agent. Liu X; Hu C; Chu L Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32707705 [TBL] [Abstract][Full Text] [Related]
11. Effect of silica fume and fly ash as cementitious material on hardened properties and embodied carbon of roller compacted concrete. Kumar A; Bheel N; Ahmed I; Rizvi SH; Kumar R; Jhatial AA Environ Sci Pollut Res Int; 2022 Jan; 29(1):1210-1222. PubMed ID: 34350574 [TBL] [Abstract][Full Text] [Related]
12. Production of thermal insulation blocks from bottom ash of fluidized bed combustion system. Mandal AK; Sinha OP Waste Manag Res; 2017 Aug; 35(8):810-819. PubMed ID: 28539100 [TBL] [Abstract][Full Text] [Related]
13. Strength, microstructure, and thermal conductivity of the insulation wallboards prepared with rice husk fiber and recycled concrete aggregates. Yu X; Sun L PLoS One; 2018; 13(9):e0203527. PubMed ID: 30231053 [TBL] [Abstract][Full Text] [Related]
14. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869 [TBL] [Abstract][Full Text] [Related]
15. Thermal and mechanical properties of coal gasification slag based foam concrete. Liu L; Yang J; She Y; Lv S; Yang Z; Hu P Environ Sci Pollut Res Int; 2023 Apr; 30(17):49905-49916. PubMed ID: 36787067 [TBL] [Abstract][Full Text] [Related]
16. Thermo-mechanical properties and sustainability analysis of newly developed eco-friendly structural foamed concrete by reusing palm oil fuel ash and eggshell powder as supplementary cementitious materials. Jhatial AA; Goh WI; Mastoi AK; Rahman AF; Kamaruddin S Environ Sci Pollut Res Int; 2021 Aug; 28(29):38947-38968. PubMed ID: 33745050 [TBL] [Abstract][Full Text] [Related]
17. Acceleration of Intended Pozzolanic Reaction under Initial Thermal Treatment for Developing Cementless Fly Ash Based Mortar. Kwon YH; Kang SH; Hong SG; Moon J Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772585 [TBL] [Abstract][Full Text] [Related]
18. Radon exhalation of cementitious materials made with coal fly ash: Part 2--testing hardened cement-fly ash pastes. Kovler K; Perevalov A; Levit A; Steiner V; Metzger LA J Environ Radioact; 2005; 82(3):335-50. PubMed ID: 15885379 [TBL] [Abstract][Full Text] [Related]
19. Combined effect of silica fume and fly ash as cementitious material on strength characteristics, embodied carbon, and cost of autoclave aerated concrete. Lashari AR; Kumar A; Kumar R; Rizvi SH Environ Sci Pollut Res Int; 2023 Feb; 30(10):27875-27883. PubMed ID: 36394814 [TBL] [Abstract][Full Text] [Related]
20. Using Fumed Silica to Develop Thermal Insulation Cement for Medium-Low Temperature Geothermal Wells. Shen L; Tan H; Ye Y; He W Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]