These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34390111)

  • 1. Fluorine NMR Spectroscopy Enables to Quantify the Affinity Between DNA and Proteins in Cell Lysate.
    Welte H; Sinn P; Kovermann M
    Chembiochem; 2021 Oct; 22(20):2973-2980. PubMed ID: 34390111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Protein Stability in Cell Lysate by
    Welte H; Kovermann M
    Chembiochem; 2020 Dec; 21(24):3575-3579. PubMed ID: 32786103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted expression and purification of fluorine labelled cold shock protein B by using an auxotrophic strategy.
    Welte H; Kovermann M
    Protein Expr Purif; 2019 May; 157():86-91. PubMed ID: 30738179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein.
    Welte H; Zhou T; Mihajlenko X; Mayans O; Kovermann M
    Sci Rep; 2020 Feb; 10(1):2640. PubMed ID: 32060391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB.
    Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U
    J Mol Biol; 2006 Jul; 360(3):702-14. PubMed ID: 16780871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of entropy in protein thermostability: folding kinetics of a hyperthermophilic cold shock protein at high temperatures using 19F NMR.
    Schuler B; Kremer W; Kalbitzer HR; Jaenicke R
    Biochemistry; 2002 Oct; 41(39):11670-80. PubMed ID: 12269809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-stranded DNA binding of the cold-shock protein CspB from Bacillus subtilis: NMR mapping and mutational characterization.
    Zeeb M; Balbach J
    Protein Sci; 2003 Jan; 12(1):112-23. PubMed ID: 12493834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of GSP13 from Bacillus subtilis exhibits an S1 domain related to cold shock proteins.
    Yu W; Hu J; Yu B; Xia W; Jin C; Xia B
    J Biomol NMR; 2009 Apr; 43(4):255-9. PubMed ID: 19152054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1H, 13C, and 15N resonance assignments of a general stress protein GSP13 from Bacillus subtilis.
    Yu W; Yu B; Hu J; Xia W; Jin C; Xia B
    Biomol NMR Assign; 2008 Dec; 2(2):163-5. PubMed ID: 19636895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis.
    Weber MH; Marahiel MA
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):895-907. PubMed ID: 12171653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis.
    Bienert R; Zeeb M; Dostál L; Feske A; Magg C; Max K; Welfle H; Balbach J; Heinemann U
    Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):755-7. PubMed ID: 15039576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates.
    Lopez MM; Makhatadze GI
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):196-202. PubMed ID: 10862969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions.
    Kojetin DJ; McLaughlin PD; Thompson RJ; Dubnau D; Prepiak P; Rance M; Cavanagh J
    J Mol Biol; 2009 Apr; 387(3):639-52. PubMed ID: 19361434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif.
    Schröder K; Graumann P; Schnuchel A; Holak TA; Marahiel MA
    Mol Microbiol; 1995 May; 16(4):699-708. PubMed ID: 7476164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template.
    Lopez MM; Yutani K; Makhatadze GI
    J Biol Chem; 2001 May; 276(18):15511-8. PubMed ID: 11278683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the replication terminator protein of Bacillus subtilis with DNA probed by NMR spectroscopy.
    Hastings AF; Otting G; Folmer RH; Duggin IG; Wake RG; Wilce MC; Wilce JA
    Biochem Biophys Res Commun; 2005 Sep; 335(2):361-6. PubMed ID: 16061201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including the Ensemble of Unstructured Conformations in the Analysis of Protein's Native State by High-Pressure NMR Spectroscopy.
    Berner F; Kovermann M
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202401343. PubMed ID: 38656763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined NMR-observation of cold denaturation in supercooled water and heat denaturation enables accurate measurement of deltaC(p) of protein unfolding.
    Szyperski T; Mills JL; Perl D; Balbach J
    Eur Biophys J; 2006 Apr; 35(4):363-6. PubMed ID: 16240113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity in Repressor-DNA Interactions Neutralizes Loss of Symmetry in Bipartite Operators.
    Jain D; Narayanan N; Nair DT
    J Biol Chem; 2016 Jan; 291(3):1235-42. PubMed ID: 26511320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.