BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 34390312)

  • 1. Understanding the Effect of Solvent Environment on the Interaction of Hydronium Ion with Biomass Derived Species: A Molecular Dynamics and Metadynamics Investigation.
    Velasco Calderón JC; Jiang S; Mushrif SH
    Chemphyschem; 2021 Nov; 22(21):2222-2230. PubMed ID: 34390312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation.
    Mushrif SH; Caratzoulas S; Vlachos DG
    Phys Chem Chem Phys; 2012 Feb; 14(8):2637-44. PubMed ID: 22273799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the Stability of the Hydronium Ion in Organic Solvents With Molecular Dynamics Simulations.
    Chew AK; Van Lehn RC
    Front Chem; 2019; 7():439. PubMed ID: 31275924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient catalytic system for the conversion of fructose into 5-ethoxymethylfurfural.
    Wang H; Deng T; Wang Y; Qi Y; Hou X; Zhu Y
    Bioresour Technol; 2013 May; 136():394-400. PubMed ID: 23567707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures.
    Tsilomelekis G; Josephson TR; Nikolakis V; Caratzoulas S
    ChemSusChem; 2014 Jan; 7(1):117-26. PubMed ID: 24408726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.
    Kimura H; Nakahara M; Matubayasi N
    J Phys Chem A; 2013 Mar; 117(10):2102-13. PubMed ID: 23458365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One Step Conversion of Glucose into 5-Hydroxymethylfurfural (HMF) via a Basic Catalyst in Mixed Solvent Systems of Ionic Liquid-Dimethyl Sulfoxide.
    Tang Z; Su J
    J Oleo Sci; 2019 Mar; 68(3):261-271. PubMed ID: 30760673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms and energetics for acid catalyzed β-D-glucose conversion to 5-hydroxymethylfurfurl.
    Qian X
    J Phys Chem A; 2011 Oct; 115(42):11740-8. PubMed ID: 21916465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of 5-hydroxymethylfurfural from highly concentrated aqueous fructose solutions using activated carbon.
    Nishimura Y; Suda M; Kuroha M; Kobayashi H; Nakajima K; Fukuoka A
    Carbohydr Res; 2019 Dec; 486():107826. PubMed ID: 31589993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by Brønsted-acidic ionic liquids.
    Tong X; Li Y
    ChemSusChem; 2010 Mar; 3(3):350-5. PubMed ID: 20082406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of Fructose to HMF in a Continuous Fixed Bed Reactor with Outstanding Selectivity.
    Weingart E; Tschirner S; Teevs L; Prüße U
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30037031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining Acid Formation During the Selective Dehydration of Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide and Water.
    Whitaker MR; Parulkar A; Ranadive P; Joshi R; Brunelli NA
    ChemSusChem; 2019 May; 12(10):2211-2219. PubMed ID: 30908838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvation dynamics and energetics of intramolecular hydride transfer reactions in biomass conversion.
    Mushrif SH; Varghese JJ; Krishnamurthy CB
    Phys Chem Chem Phys; 2015 Feb; 17(7):4961-9. PubMed ID: 25591500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system.
    Ordomsky VV; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2012 Sep; 5(9):1812-9. PubMed ID: 22777706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Dehydration of Fructose to 5-Hydroxymethylfurfural (HMF) in Low-Boiling Solvent Hexafluoroisopropanol (HFIP).
    Tschirner S; Weingart E; Teevs L; Prüße U
    Molecules; 2018 Jul; 23(8):. PubMed ID: 30050015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water content on conversion of D-cellobiose into 5-hydroxymethyl-2-furaldehyde in a dimethyl sulfoxide-water mixture.
    Kimura H; Yoshida K; Uosaki Y; Nakahara M
    J Phys Chem A; 2013 Oct; 117(43):10987-96. PubMed ID: 24147840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of fructose and glucose into 5-hydroxymethylfurfural with lignin-derived carbonaceous catalyst under microwave irradiation in dimethyl sulfoxide-ionic liquid mixtures.
    Guo F; Fang Z; Zhou TJ
    Bioresour Technol; 2012 May; 112():313-8. PubMed ID: 22429401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-properties relationship in the hydronium-containing pyrochlores (H
    Mayer SF; Falcón H; Fernández-Díaz MT; Campos-Martín JM; Alonso JA
    Dalton Trans; 2020 Aug; 49(33):11657-11667. PubMed ID: 32785370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods.
    Assary RS; Redfern PC; Greeley J; Curtiss LA
    J Phys Chem B; 2011 Apr; 115(15):4341-9. PubMed ID: 21443225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.