These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 34390372)

  • 1. Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study.
    Choi H; Chang W; Kim JH; Ahn C; Lee H; Kim HY; Cho J; Lee YJ; Kim YH
    Eur Radiol; 2022 Feb; 32(2):1247-1255. PubMed ID: 34390372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques.
    Nam JG; Ahn C; Choi H; Hong W; Park J; Kim JH; Goo JM
    Eur Radiol; 2021 Jul; 31(7):5139-5147. PubMed ID: 33415436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.
    Bellmann Q; Peng Y; Genske U; Yan L; Wagner M; Jahnke P
    Eur Radiol Exp; 2024 Jul; 8(1):84. PubMed ID: 39046565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.
    Greffier J; Durand Q; Frandon J; Si-Mohamed S; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Eur Radiol; 2023 Jan; 33(1):699-710. PubMed ID: 35864348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two deep learning image reconstruction algorithms in chest CT images: A task-based image quality assessment on phantom data.
    Greffier J; Frandon J; Si-Mohamed S; Dabli D; Hamard A; Belaouni A; Akessoul P; Besse F; Guiu B; Beregi JP
    Diagn Interv Imaging; 2022 Jan; 103(1):21-30. PubMed ID: 34493475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study.
    Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D
    Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen.
    Thor D; Titternes R; Poludniowski G
    Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
    Higaki T; Nakamura Y; Zhou J; Yu Z; Nemoto T; Tatsugami F; Awai K
    Acad Radiol; 2020 Jan; 27(1):82-87. PubMed ID: 31818389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation Dose Reduction for 80-kVp Pediatric CT Using Deep Learning-Based Reconstruction: A Clinical and Phantom Study.
    Nagayama Y; Goto M; Sakabe D; Emoto T; Shigematsu S; Oda S; Tanoue S; Kidoh M; Nakaura T; Funama Y; Uchimura R; Takada S; Hayashi H; Hatemura M; Hirai T
    AJR Am J Roentgenol; 2022 Aug; 219(2):315-324. PubMed ID: 35195431
    [No Abstract]   [Full Text] [Related]  

  • 10. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm.
    Im JY; Halliburton SS; Mei K; Perkins AE; Wong E; Roshkovan L; Sandvold OF; Liu LP; Gang GJ; Noël PB
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38604190
    [No Abstract]   [Full Text] [Related]  

  • 11. Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study.
    Toia GV; Zamora DA; Singleton M; Liu A; Tan E; Leng S; Shuman WP; Kanal KM; Mileto A
    AJR Am J Roentgenol; 2023 Feb; 220(2):283-295. PubMed ID: 36129222
    [No Abstract]   [Full Text] [Related]  

  • 12. Implementation of AI image reconstruction in CT-how is it validated and what dose reductions can be achieved.
    Brady SL
    Br J Radiol; 2023 Oct; 96(1150):20220915. PubMed ID: 37102695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study.
    Kim Y; Oh DY; Chang W; Kang E; Ye JC; Lee K; Kim HY; Kim YH; Park JH; Lee YJ; Lee KH
    Eur Radiol; 2021 Nov; 31(11):8755-8764. PubMed ID: 33885958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution deep-learning reconstruction for cardiac CT: impact of radiation dose and focal spot size on task-based image quality.
    Emoto T; Nagayama Y; Takada S; Sakabe D; Shigematsu S; Goto M; Nakato K; Yoshida R; Harai R; Kidoh M; Oda S; Nakaura T; Hirai T
    Phys Eng Sci Med; 2024 Sep; 47(3):1001-1014. PubMed ID: 38884668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely?
    Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D
    Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study.
    Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J
    Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a Deep Learning-Based Reconstruction Algorithm with Filtered Back Projection and Iterative Reconstruction Algorithms for Pediatric Abdominopelvic CT.
    Son W; Kim M; Hwang JY; Kim YW; Park C; Choo KS; Kim TU; Jang JY
    Korean J Radiol; 2022 Jul; 23(7):752-762. PubMed ID: 35695313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Image Quality and Reducing Radiation Dose for Pediatric CT by Using Deep Learning Reconstruction.
    Brady SL; Trout AT; Somasundaram E; Anton CG; Li Y; Dillman JR
    Radiology; 2021 Jan; 298(1):180-188. PubMed ID: 33201790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment.
    Bornet PA; Villani N; Gillet R; Germain E; Lombard C; Blum A; Gondim Teixeira PA
    Eur Radiol; 2022 May; 32(5):3161-3172. PubMed ID: 34989850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of an artificial intelligence deep-learning reconstruction algorithm for dose optimization in lumbar spine CT examination: A phantom study.
    Greffier J; Frandon J; Durand Q; Kammoun T; Loisy M; Beregi JP; Dabli D
    Diagn Interv Imaging; 2023 Feb; 104(2):76-83. PubMed ID: 36100524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.