These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 34390749)
1. Low-temperature adaptive conductive hydrogel based on ice structuring proteins/CaCl Lu C; Qiu J; Zhao W; Sakai E; Zhang G; Nobe R; Kudo M; Komiyama T Int J Biol Macromol; 2021 Oct; 188():534-541. PubMed ID: 34390749 [TBL] [Abstract][Full Text] [Related]
2. Anti-freezing hydrogel regulated by ice-structuring proteins/cellulose nanofibers system as flexible sensor for winter sports. Gao X; Wu J; Wang Y; Wang Y; Zhang Y; Nguyen TT; Guo M Int J Biol Macromol; 2024 Apr; 265(Pt 2):131118. PubMed ID: 38522685 [TBL] [Abstract][Full Text] [Related]
3. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Wang C; Li J; Fang Z; Hu Z; Wei X; Cao Y; Han J; Li Y Macromol Rapid Commun; 2022 Jan; 43(1):e2100543. PubMed ID: 34699666 [TBL] [Abstract][Full Text] [Related]
4. Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. Chen D; Zhao X; Wei X; Zhang J; Wang D; Lu H; Jia P ACS Appl Mater Interfaces; 2020 Nov; 12(47):53247-53256. PubMed ID: 33185423 [TBL] [Abstract][Full Text] [Related]
5. Ultra-stretchable, adhesive, fatigue resistance, and anti-freezing conductive hydrogel based on gelatin/guar gum and liquid metal for dual-sensory flexible sensor and all-in-one supercapacitors. Zhao R; Fang Y; Zhao Z; Song S Int J Biol Macromol; 2024 Jun; 271(Pt 2):132585. PubMed ID: 38810849 [TBL] [Abstract][Full Text] [Related]
6. Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Hu Y; Zhang M; Qin C; Qian X; Zhang L; Zhou J; Lu A Carbohydr Polym; 2021 Aug; 265():118078. PubMed ID: 33966842 [TBL] [Abstract][Full Text] [Related]
7. Highly stretchable anti-freeze hydrogel based on aloe polysaccharides with high ionic conductivity for multifunctional wearable sensors. Xiao S; Lao Y; Liu H; Li D; Wei Q; Li Z; Lu S Int J Biol Macromol; 2024 Jan; 254(Pt 2):127931. PubMed ID: 37944728 [TBL] [Abstract][Full Text] [Related]
8. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Wang H; Li Z; Zuo M; Zeng X; Tang X; Sun Y; Lin L Carbohydr Polym; 2022 Mar; 280():119018. PubMed ID: 35027123 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional conductive hydrogels and their applications as smart wearable devices. Chen Z; Chen Y; Hedenqvist MS; Chen C; Cai C; Li H; Liu H; Fu J J Mater Chem B; 2021 Mar; 9(11):2561-2583. PubMed ID: 33599653 [TBL] [Abstract][Full Text] [Related]
10. A Review of Conductive Hydrogel-Based Wearable Temperature Sensors. Mo F; Zhou P; Lin S; Zhong J; Wang Y Adv Healthc Mater; 2024 Oct; 13(26):e2401503. PubMed ID: 38857480 [TBL] [Abstract][Full Text] [Related]
11. Low-Temperature Adaptive Dual-Network MXene Nanocomposite Hydrogel as Flexible Wearable Strain Sensors. Chen K; Lai W; Xiao W; Li L; Huang S; Xiao X Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630100 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties. Chen M; Quan Q; You Z; Dong Y; Zhou X Int J Biol Macromol; 2023 Dec; 253(Pt 6):127396. PubMed ID: 37827399 [TBL] [Abstract][Full Text] [Related]
13. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. Guan L; Yan S; Liu X; Li X; Gao G J Mater Chem B; 2019 Sep; 7(34):5230-5236. PubMed ID: 31378805 [TBL] [Abstract][Full Text] [Related]
14. A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Lu L; Huang Z; Li X; Li X; Cui B; Yuan C; Guo L; Liu P; Dai Q Int J Biol Macromol; 2022 Jul; 213():791-803. PubMed ID: 35679959 [TBL] [Abstract][Full Text] [Related]
15. Ion-Conductive Hydrogel-Based Stretchable, Self-Healing, and Transparent NO Wu Z; Rong L; Yang J; Wei Y; Tao K; Zhou Y; Yang BR; Xie X; Wu J Small; 2021 Dec; 17(52):e2104997. PubMed ID: 34672085 [TBL] [Abstract][Full Text] [Related]
16. Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors. Li X; Zhang S; Li X; Lu L; Cui B; Yuan C; Guo L; Yu B; Chai Q Carbohydr Polym; 2023 Nov; 320():121262. PubMed ID: 37659784 [TBL] [Abstract][Full Text] [Related]
17. Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors. Chen J; Wen H; Zhang G; Lei F; Feng Q; Liu Y; Cao X; Dong H ACS Appl Mater Interfaces; 2020 Feb; 12(6):7565-7574. PubMed ID: 31971764 [TBL] [Abstract][Full Text] [Related]
18. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Han Y; Sun L; Wen C; Wang Z; Dai J; Shi L Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35147523 [TBL] [Abstract][Full Text] [Related]
19. Superhydrophobic, Anti-Freezing and Multi-Cross-Linked Wearable Hydrogel Strain Sensor for Underwater Gesture Recognition. Liu Y; Yu H; Zhou G; Peng M ACS Sens; 2024 Sep; 9(9):4617-4625. PubMed ID: 39193764 [TBL] [Abstract][Full Text] [Related]
20. Smart Antifreeze Hydrogels with Abundant Hydrogen Bonding for Conductive Flexible Sensors. Dai B; Cui T; Xu Y; Wu S; Li Y; Wang W; Liu S; Tang J; Tang L Gels; 2022 Jun; 8(6):. PubMed ID: 35735718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]