BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34391015)

  • 1. Characterization and comparison of hyper-viscoelastic properties of normal and osteoporotic bone using stress-relaxation experiment.
    Niki Y; Seifzadeh A
    J Mech Behav Biomed Mater; 2021 Nov; 123():104754. PubMed ID: 34391015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of injurious compression on the elastic, hyper-elastic and visco-elastic properties of porcine peripheral nerves.
    Fraser S; Barberio CG; Chaudhry T; Power DM; Tan S; Lawless BM; Espino DM
    J Mech Behav Biomed Mater; 2021 Sep; 121():104624. PubMed ID: 34139483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
    Chang CT; Chen YH; Lin CC; Ju MS
    J Biomech; 2015 Jul; 48(10):1982-7. PubMed ID: 25912662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone - An experimental and finite element study.
    Ojanen X; Tanska P; Malo MKH; Isaksson H; Väänänen SP; Koistinen AP; Grassi L; Magnusson SP; Ribel-Madsen SM; Korhonen RK; Jurvelin JS; Töyräs J
    J Biomech; 2017 Dec; 65():96-105. PubMed ID: 29108850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.
    Wei F; Yang H; Liu L; Li G
    Comput Methods Biomech Biomed Engin; 2017 Mar; 20(4):373-384. PubMed ID: 27627026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.
    Li Y; Deng J; Zhou J; Li X
    J Mater Sci Mater Med; 2016 Nov; 27(11):163. PubMed ID: 27646405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.
    MacManus DB; Pierrat B; Murphy JG; Gilchrist MD
    Acta Biomater; 2017 Jan; 48():309-318. PubMed ID: 27777117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of a relaxation test designed to fit a quasi-linear viscoelastic model for temporomandibular joint discs.
    Commisso MS; Martínez-Reina J; Mayo J; Domínguez J
    Proc Inst Mech Eng H; 2013 Feb; 227(2):190-9. PubMed ID: 23513990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal hyper-viscoelastic model: derivations, experiments, and simulations.
    Su P; Yang Y; Xiao J; Song Y
    Acta Bioeng Biomech; 2015; 17(2):73-84. PubMed ID: 26399307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nonlinear elastic and viscoelastic passive properties of left ventricular papillary muscle of a guinea pig heart.
    Hassan MA; Hamdi M; Noma A
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):99-109. PubMed ID: 22100084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The poro-viscoelastic properties of trabecular bone: a micro computed tomography-based finite element study.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2015 Apr; 44():1-9. PubMed ID: 25591049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.