BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34391019)

  • 1. Ruthenium(II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia.
    Wei F; Kuang S; Rees TW; Liao X; Liu J; Luo D; Wang J; Zhang X; Ji L; Chao H
    Biomaterials; 2021 Sep; 276():121064. PubMed ID: 34391019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An intelligent dual stimuli-responsive photosensitizer delivery system with O
    Zhao H; Li L; Zheng C; Hao Y; Niu M; Hu Y; Chang J; Zhang Z; Wang L
    Colloids Surf B Biointerfaces; 2018 Jul; 167():299-309. PubMed ID: 29679806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy.
    Liu X; Xing S; Xu Y; Chen R; Lin C; Guo L
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119363. PubMed ID: 33422878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-photon excited O
    Li RQ; Zhang C; Xie BR; Yu WY; Qiu WX; Cheng H; Zhang XZ
    Biomaterials; 2019 Feb; 194():84-93. PubMed ID: 30583151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of type I photosensitizers based on Ru(ii) complexes for effective photodynamic therapy under hypoxia.
    Liu X; Li G; Xie M; Guo S; Zhao W; Li F; Liu S; Zhao Q
    Dalton Trans; 2020 Aug; 49(32):11192-11200. PubMed ID: 32748922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple therapeutic mechanisms of pyrrolic N-rich g-C
    Song S; Yang M; He F; Zhang X; Gao Y; An B; Ding H; Gai S; Yang P
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1125-1137. PubMed ID: 37473473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Versatile Near Infrared Light Triggered Dual-Photosensitizer for Synchronous Bioimaging and Photodynamic Therapy.
    Feng L; He F; Dai Y; Liu B; Yang G; Gai S; Niu N; Lv R; Li C; Yang P
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12993-13008. PubMed ID: 28368107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O
    Chen H; He C; Chen T; Xue X
    Biomater Sci; 2020 Jul; 8(14):3994-4002. PubMed ID: 32573618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIR-Driven Intracellular Photocatalytic O
    Sang D; Wang K; Sun X; Wang Y; Lin H; Jia R; Qu F
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9604-9619. PubMed ID: 33605733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional Theranostics for Dual-Modal Photodynamic Synergistic Therapy via Stepwise Water Splitting.
    Yang D; Yang G; Gai S; He F; Li C; Yang P
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6829-6838. PubMed ID: 28170217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core-satellite nanoreactors based on cationic photosensitizer modified hollow CuS nanocage for ROS diffusion enhanced phototherapy of hypoxic tumor.
    Mu X; Chang Y; Bao Y; Cui A; Zhong X; Cooper GB; Guo A; Shan G
    Biomater Adv; 2023 Feb; 145():213263. PubMed ID: 36623354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy.
    Feng L; He F; Yang G; Gai S; Dai Y; Li C; Yang P
    J Mater Chem B; 2016 Dec; 4(48):8000-8008. PubMed ID: 32263789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper(II)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy.
    Ju E; Dong K; Chen Z; Liu Z; Liu C; Huang Y; Wang Z; Pu F; Ren J; Qu X
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11467-71. PubMed ID: 27504861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-in-1 Fe
    Cheng HL; Guo HL; Xie AJ; Shen YH; Zhu MZ
    J Inorg Biochem; 2021 Feb; 215():111329. PubMed ID: 33321394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid TiO
    Gilson RC; Black KCL; Lane DD; Achilefu S
    Angew Chem Int Ed Engl; 2017 Aug; 56(36):10717-10720. PubMed ID: 28667692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy.
    Cheng X; He L; Xu J; Fang Q; Yang L; Xue Y; Wang X; Tang R
    Acta Biomater; 2020 Aug; 112():234-249. PubMed ID: 32502633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-action nanoplatform with a synergetic strategy to promote oxygen accumulation for enhanced photodynamic therapy against hypoxic tumors.
    Ren C; Xu X; Yan D; Gu M; Zhang J; Zhang H; Han C; Kong L
    Acta Biomater; 2022 Jul; 146():465-477. PubMed ID: 35526738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy.
    Guo X; Qu J; Zhu C; Li W; Luo L; Yang J; Yin X; Li Q; Du Y; Chen D; Qiu Y; Lou Y; You J
    Drug Deliv; 2018 Nov; 25(1):585-599. PubMed ID: 29461122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors.
    Bai J; Peng C; Lv W; Liu J; Hei Y; Bo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39055-39065. PubMed ID: 34433248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-Dot-Decorated Carbon Nitride Nanoparticles for Enhanced Photodynamic Therapy against Hypoxic Tumor via Water Splitting.
    Zheng DW; Li B; Li CX; Fan JX; Lei Q; Li C; Xu Z; Zhang XZ
    ACS Nano; 2016 Sep; 10(9):8715-22. PubMed ID: 27532320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.