BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34391093)

  • 1. The role of voltage-gated chloride channels in the epileptogenesis of temporal lobe epilepsy.
    Shen KF; Yang XL; Liu GL; Zhu G; Wang ZK; Shi XJ; Wang TT; Wu ZF; Lv SQ; Liu SY; Yang H; Zhang CQ
    EBioMedicine; 2021 Aug; 70():103537. PubMed ID: 34391093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClC-2 contributes to tonic inhibition mediated by α5 subunit-containing GABA(A) receptor in experimental temporal lobe epilepsy.
    Ge YX; Liu Y; Tang HY; Liu XG; Wang X
    Neuroscience; 2011 Jul; 186():120-7. PubMed ID: 21549811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retraction. Clc-2 knockout attenuated experimental temporal lobe epilepsy in mice by tonic inhibition mediated by GABAA receptors.
    Ge YX; Tian XZ
    Brain Res Bull; 2016 Mar; 121():209-14. PubMed ID: 26876934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorbs2 regulates seizure activity by influencing AMPAR-mediated excitatory synaptic transmission in temporal lobe epilepsy.
    Ban Y; Yang X; Tan D; Gong C; Gao Y; Yuan J; Chen Y; Wang Y; Xu T
    Neurochem Int; 2024 Jun; 176():105727. PubMed ID: 38555055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion.
    Rinke I; Artmann J; Stein V
    J Neurosci; 2010 Mar; 30(13):4776-86. PubMed ID: 20357128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female mice lacking ERβ display excitatory/inhibitory synaptic imbalance to drive the pathogenesis of temporal lobe epilepsy.
    Wang Z; Xie R; Yang X; Yin H; Li X; Liu T; Ma Y; Gao J; Zang Z; Ruan R; Li Y; Huang K; Chen Q; Shen K; Lv S; Zhang C; Yang H; Warner M; Gustafsson JA; Liu S; Fan X
    Theranostics; 2021; 11(12):6074-6089. PubMed ID: 33897900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the mouse ClC-K1/Barttin chloride channel.
    L'Hoste S; Diakov A; Andrini O; Genete M; Pinelli L; Grand T; Keck M; Paulais M; Beck L; Korbmacher C; Teulon J; Lourdel S
    Biochim Biophys Acta; 2013 Nov; 1828(11):2399-409. PubMed ID: 23791703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ClC-3 is a candidate of the channel proteins mediating acid-activated chloride currents in nasopharyngeal carcinoma cells.
    Wang L; Ma W; Zhu L; Ye D; Li Y; Liu S; Li H; Zuo W; Li B; Ye W; Chen L
    Am J Physiol Cell Physiol; 2012 Jul; 303(1):C14-23. PubMed ID: 22496242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pro-excitatory alterations in sodium channel activity facilitate subiculum neuron hyperexcitability in temporal lobe epilepsy.
    Barker BS; Nigam A; Ottolini M; Gaykema RP; Hargus NJ; Patel MK
    Neurobiol Dis; 2017 Dec; 108():183-194. PubMed ID: 28860087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy.
    Dubey V; Dey S; Dixit AB; Tripathi M; Chandra PS; Banerjee J
    Exp Neurol; 2022 Jan; 347():113916. PubMed ID: 34752784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy.
    Zhu X; Zhang A; Dong J; Yao Y; Zhu M; Xu K; Al Hamda MH
    Brain Res Bull; 2019 Oct; 152():175-183. PubMed ID: 31336125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of constitutive functional γ-aminobutyric acid type A-B receptor crosstalk in layer 5 pyramidal neurons of human epileptic temporal cortex.
    Martinello K; Sciaccaluga M; Morace R; Mascia A; Arcella A; Esposito V; Fucile S
    Epilepsia; 2018 Feb; 59(2):449-459. PubMed ID: 29283181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy.
    Eichler SA; Kirischuk S; Jüttner R; Schaefermeier PK; Legendre P; Lehmann TN; Gloveli T; Grantyn R; Meier JC
    J Cell Mol Med; 2008 Dec; 12(6B):2848-66. PubMed ID: 19210758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection.
    Bragin A; Engel J; Wilson CL; Vizentin E; Mathern GW
    Epilepsia; 1999 Sep; 40(9):1210-21. PubMed ID: 10487183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fibroblast growth factor 13 is involved in the pathogenesis of temporal lobe epilepsy.
    Shen KF; Yue J; Wu ZF; Wu KF; Zhu G; Yang XL; Wang ZK; Wang J; Liu SY; Yang H; Zhang CQ
    Cereb Cortex; 2022 Nov; 32(23):5259-5272. PubMed ID: 35195262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional role of mGluR1 and mGluR4 in pilocarpine-induced temporal lobe epilepsy.
    Pitsch J; Schoch S; Gueler N; Flor PJ; van der Putten H; Becker AJ
    Neurobiol Dis; 2007 Jun; 26(3):623-33. PubMed ID: 17446080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced expression of a specific hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) in surviving dentate gyrus granule cells of human and experimental epileptic hippocampus.
    Bender RA; Soleymani SV; Brewster AL; Nguyen ST; Beck H; Mathern GW; Baram TZ
    J Neurosci; 2003 Jul; 23(17):6826-36. PubMed ID: 12890777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy.
    Kang YJ; Clement EM; Park IH; Greenfield LJ; Smith BN; Lee SH
    Exp Neurol; 2021 Aug; 342():113724. PubMed ID: 33915166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic CLC-3 determines quantal size of inhibitory transmission in the hippocampus.
    Riazanski V; Deriy LV; Shevchenko PD; Le B; Gomez EA; Nelson DJ
    Nat Neurosci; 2011 Apr; 14(4):487-94. PubMed ID: 21378974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Initiation of network bursts by Ca2+-dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy.
    Sanabria ER; Su H; Yaari Y
    J Physiol; 2001 Apr; 532(Pt 1):205-16. PubMed ID: 11283235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.