These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34391115)

  • 21. Flow dependent performance of microfluidic microbial fuel cells.
    Vigolo D; Al-Housseiny TT; Shen Y; Akinlawon FO; Al-Housseiny ST; Hobson RK; Sahu A; Bedkowski KI; DiChristina TJ; Stone HA
    Phys Chem Chem Phys; 2014 Jun; 16(24):12535-43. PubMed ID: 24832908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast Start-Up Microfluidic Microbial Fuel Cells With Serpentine Microchannel.
    Luo X; Xie W; Wang R; Wu X; Yu L; Qiao Y
    Front Microbiol; 2018; 9():2816. PubMed ID: 30515148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron phthalocyanine supported on amino-functionalized multi-walled carbon nanotube as an alternative cathodic oxygen catalyst in microbial fuel cells.
    Yuan Y; Zhao B; Jeon Y; Zhong S; Zhou S; Kim S
    Bioresour Technol; 2011 May; 102(10):5849-54. PubMed ID: 21435866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membraneless glucose/O2 microfluidic enzymatic biofuel cell using pyrolyzed photoresist film electrodes.
    González-Guerrero MJ; Esquivel JP; Sánchez-Molas D; Godignon P; Muñoz FX; del Campo FJ; Giroud F; Minteer SD; Sabaté N
    Lab Chip; 2013 Aug; 13(15):2972-9. PubMed ID: 23719742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities.
    Elmekawy A; Hegab HM; Dominguez-Benetton X; Pant D
    Bioresour Technol; 2013 Aug; 142():672-82. PubMed ID: 23747174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of nickel-based layered double hydroxide (LDH) and their adsorption on carbon felt fibres: application as low cost cathode catalyst in microbial fuel cell (MFC).
    Djellali M; Kameche M; Kebaili H; Bouhent MM; Benhamou A
    Environ Technol; 2021 Jan; 42(3):492-504. PubMed ID: 31223060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application.
    Kim SI; Roh SH
    J Nanosci Nanotechnol; 2010 May; 10(5):3271-4. PubMed ID: 20358937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile technique to develop conductive paper based bioelectrodes for microbial fuel cell applications.
    U S J; Inoue S; Goel S
    Biosens Bioelectron; 2022 Oct; 214():114479. PubMed ID: 35780538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial fuel cells equipped with an iron-plated carbon-felt anode and Shewanella oneidensis MR-1 with corn steep liquor as a fuel.
    Phansroy N; Khawdas W; Watanabe K; Aso Y; Ohara H
    J Biosci Bioeng; 2018 Oct; 126(4):514-521. PubMed ID: 29764764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.
    Hou H; Li L; Cho Y; de Figueiredo P; Han A
    PLoS One; 2009 Aug; 4(8):e6570. PubMed ID: 19668333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid glucose fuel cell based on electrodeposited carbon nanotubes and platinized carbon.
    Kulkami T; Slaughter G
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1167-1170. PubMed ID: 31946101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Employment of osmotic pump as a novel feeding system to operate the laminar-flow microfluidic microbial fuel cell.
    Cao TN; Chang CC; Mukhtar H; Sun Q; Li Y; Yu CP
    Environ Res; 2022 Dec; 215(Pt 3):114347. PubMed ID: 36116490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube modification of microbial fuel cell electrodes.
    Yazdi AA; D'Angelo L; Omer N; Windiasti G; Lu X; Xu J
    Biosens Bioelectron; 2016 Nov; 85():536-552. PubMed ID: 27213269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
    Wu X; Zou L; Huang Y; Qiao Y; Long ZE; Liu H; Li CM
    Enzyme Microb Technol; 2018 Aug; 115():23-28. PubMed ID: 29859599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical tension-triggered conversion of anaerobic to aerobic respiration of Shewanella putrefaciens CN32 cells while promoting biofilm growth in microbial fuel cells.
    He X; Wu X; Qiao Y; Hu T; Wang D; Han X; Li CM
    Chem Commun (Camb); 2020 Jun; 56(45):6050-6053. PubMed ID: 32347873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.
    Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY
    Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.
    Fitzgerald LA; Petersen ER; Gross BJ; Soto CM; Ringeisen BR; El-Naggar MY; Biffinger JC
    Biosens Bioelectron; 2012 Jan; 31(1):492-8. PubMed ID: 22154401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.