These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 34391366)
1. Optical response of laser-driven charge-transfer complex described by Holstein-Hubbard model coupled to heat baths: Hierarchical equations of motion approach. Nakamura K; Tanimura Y J Chem Phys; 2021 Aug; 155(6):064106. PubMed ID: 34391366 [TBL] [Abstract][Full Text] [Related]
2. Exciton transfer in organic photovoltaic cells: A role of local and nonlocal electron-phonon interactions in a donor domain. Cainelli M; Tanimura Y J Chem Phys; 2021 Jan; 154(3):034107. PubMed ID: 33499615 [TBL] [Abstract][Full Text] [Related]
3. Multistate electron transfer dynamics in the condensed phase: exact calculations from the reduced hierarchy equations of motion approach. Tanaka M; Tanimura Y J Chem Phys; 2010 Jun; 132(21):214502. PubMed ID: 20528026 [TBL] [Abstract][Full Text] [Related]
4. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Sääskilahti K; Oksanen J; Tulkki J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012128. PubMed ID: 23944435 [TBL] [Abstract][Full Text] [Related]
5. Numerically "exact" approach to open quantum dynamics: The hierarchical equations of motion (HEOM). Tanimura Y J Chem Phys; 2020 Jul; 153(2):020901. PubMed ID: 32668942 [TBL] [Abstract][Full Text] [Related]
7. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. Cainelli M; Borrelli R; Tanimura Y J Chem Phys; 2022 Aug; 157(8):084103. PubMed ID: 36049980 [TBL] [Abstract][Full Text] [Related]
8. Modeling and Simulating the Excited-State Dynamics of a System with Condensed Phases: A Machine Learning Approach. Ueno S; Tanimura Y J Chem Theory Comput; 2021 Jun; 17(6):3618-3628. PubMed ID: 33999606 [TBL] [Abstract][Full Text] [Related]
9. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations. Sakurai A; Tanimura Y J Phys Chem A; 2011 Apr; 115(16):4009-22. PubMed ID: 21247206 [TBL] [Abstract][Full Text] [Related]
11. Competition between antiferromagnetic and charge-density-wave order in the half-filled Hubbard-Holstein model. Nowadnick EA; Johnston S; Moritz B; Scalettar RT; Devereaux TP Phys Rev Lett; 2012 Dec; 109(24):246404. PubMed ID: 23368352 [TBL] [Abstract][Full Text] [Related]
12. Intermediate phase of the one dimensional half-filled Hubbard-Holstein model. Clay RT; Hardikar RP Phys Rev Lett; 2005 Aug; 95(9):096401. PubMed ID: 16197234 [TBL] [Abstract][Full Text] [Related]
13. Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system. Ray S; Bag BC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052121. PubMed ID: 26651661 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear infrared and optical responses of a Holstein-Peirls-Hubbard dimer. Pilot R; Bozio R J Phys Chem B; 2005 Oct; 109(41):19082-9. PubMed ID: 16853460 [TBL] [Abstract][Full Text] [Related]
15. Discretized hierarchical equations of motion in mixed Liouville-Wigner space for two-dimensional vibrational spectroscopies of liquid water. Takahashi H; Tanimura Y J Chem Phys; 2023 Jan; 158(4):044115. PubMed ID: 36725520 [TBL] [Abstract][Full Text] [Related]
16. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex. Schulze J; Shibl MF; Al-Marri MJ; Kühn O J Chem Phys; 2016 May; 144(18):185101. PubMed ID: 27179506 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of a One-Dimensional Holstein Polaron with the Hierarchical Equations of Motion Approach. Chen L; Zhao Y; Tanimura Y J Phys Chem Lett; 2015 Aug; 6(15):3110-5. PubMed ID: 26267210 [TBL] [Abstract][Full Text] [Related]