These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 34391475)

  • 41. Correcting the impact of docking pose generation error on binding affinity prediction.
    Li H; Leung KS; Wong MH; Ballester PJ
    BMC Bioinformatics; 2016 Sep; 17(Suppl 11):308. PubMed ID: 28185549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Scoring Functions for Protein-Ligand Binding Affinity Prediction using Structure-Based Deep Learning: A Review.
    Meli R; Morris GM; Biggin PC
    Front Bioinform; 2022 Jun; 2():. PubMed ID: 36187180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rescoring of docking poses under Occam's Razor: are there simpler solutions?
    Zhenin M; Bahia MS; Marcou G; Varnek A; Senderowitz H; Horvath D
    J Comput Aided Mol Des; 2018 Sep; 32(9):877-888. PubMed ID: 30173397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 47. AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring function, into AutoDock Vina.
    Koebel MR; Schmadeke G; Posner RG; Sirimulla S
    J Cheminform; 2016; 8():27. PubMed ID: 27195023
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative Assessment of Scoring Functions: The CASF-2016 Update.
    Su M; Yang Q; Du Y; Feng G; Liu Z; Li Y; Wang R
    J Chem Inf Model; 2019 Feb; 59(2):895-913. PubMed ID: 30481020
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving classical scoring functions using random forest: The non-additivity of free energy terms' contributions in binding.
    Afifi K; Al-Sadek AF
    Chem Biol Drug Des; 2018 Aug; 92(2):1429-1434. PubMed ID: 29655201
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function.
    Zhang L; Ai HX; Li SM; Qi MY; Zhao J; Zhao Q; Liu HS
    Oncotarget; 2017 Oct; 8(47):83142-83154. PubMed ID: 29137330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A New Scoring Function for Molecular Docking Based on AutoDock and AutoDock Vina.
    Tanchuk VY; Tanin VO; Vovk AI; Poda G
    Curr Drug Discov Technol; 2015; 12(3):170-8. PubMed ID: 26302746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A generalized protein-ligand scoring framework with balanced scoring, docking, ranking and screening powers.
    Shen C; Zhang X; Hsieh CY; Deng Y; Wang D; Xu L; Wu J; Li D; Kang Y; Hou T; Pan P
    Chem Sci; 2023 Aug; 14(30):8129-8146. PubMed ID: 37538816
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Taba: A Tool to Analyze the Binding Affinity.
    da Silva AD; Bitencourt-Ferreira G; de Azevedo WF
    J Comput Chem; 2020 Jan; 41(1):69-73. PubMed ID: 31410856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding.
    Xie L; Xu L; Chang S; Xu X; Meng L
    Chem Biol Drug Des; 2020 Sep; 96(3):973-983. PubMed ID: 33058459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SAnDReS 2.0: Development of machine-learning models to explore the scoring function space.
    de Azevedo WF; Quiroga R; Villarreal MA; da Silveira NJF; Bitencourt-Ferreira G; da Silva AD; Veit-Acosta M; Oliveira PR; Tutone M; Biziukova N; Poroikov V; Tarasova O; Baud S
    J Comput Chem; 2024 Jun; ():. PubMed ID: 38900052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction.
    Qu X; Dong L; Luo D; Si Y; Wang B
    J Chem Inf Model; 2024 Apr; 64(7):2263-2274. PubMed ID: 37433009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets.
    Li H; Leung KS; Wong MH; Ballester PJ
    Mol Inform; 2015 Feb; 34(2-3):115-26. PubMed ID: 27490034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.