These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34391778)
1. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. Bhattacharya S; Lange JJ; Levy M; Florens L; Washburn MP; Workman JL J Biol Chem; 2021 Sep; 297(3):101075. PubMed ID: 34391778 [TBL] [Abstract][Full Text] [Related]
2. Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition. Bhattacharya S; Workman JL Epigenetics Chromatin; 2020 Oct; 13(1):40. PubMed ID: 33023640 [TBL] [Abstract][Full Text] [Related]
3. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. Hacker KE; Fahey CC; Shinsky SA; Chiang YJ; DiFiore JV; Jha DK; Vo AH; Shavit JA; Davis IJ; Strahl BD; Rathmell WK J Biol Chem; 2016 Sep; 291(40):21283-21295. PubMed ID: 27528607 [TBL] [Abstract][Full Text] [Related]
5. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Molenaar TM; van Leeuwen F Cell Mol Life Sci; 2022 Jun; 79(6):346. PubMed ID: 35661267 [TBL] [Abstract][Full Text] [Related]
6. Shaping the cellular landscape with Set2/SETD2 methylation. McDaniel SL; Strahl BD Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724 [TBL] [Abstract][Full Text] [Related]
7. Molecular determinants for α-tubulin methylation by SETD2. Kearns S; Mason FM; Rathmell WK; Park IY; Walker C; Verhey KJ; Cianfrocco MA J Biol Chem; 2021 Jul; 297(1):100898. PubMed ID: 34157286 [TBL] [Abstract][Full Text] [Related]
8. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. Gautam D; Johnson BA; Mac M; Moody CA PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361 [TBL] [Abstract][Full Text] [Related]
9. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation. Fahey CC; Davis IJ Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833 [TBL] [Abstract][Full Text] [Related]
10. The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain. Bhattacharya S; Levy MJ; Zhang N; Li H; Florens L; Washburn MP; Workman JL Nat Commun; 2021 Mar; 12(1):1443. PubMed ID: 33664260 [TBL] [Abstract][Full Text] [Related]
11. Dual Chromatin and Cytoskeletal Remodeling by SETD2. Park IY; Powell RT; Tripathi DN; Dere R; Ho TH; Blasius TL; Chiang YC; Davis IJ; Fahey CC; Hacker KE; Verhey KJ; Bedford MT; Jonasch E; Rathmell WK; Walker CL Cell; 2016 Aug; 166(4):950-962. PubMed ID: 27518565 [TBL] [Abstract][Full Text] [Related]
12. Structural and enzymatic evidence for the methylation of the ACK1 tyrosine kinase by the histone lysine methyltransferase SETD2. Le Coadou L; Berthelet J; Mechaly AE; Michail C; Bui LC; Dairou J; Haouz A; Dupret JM; Rodrigues Lima F Biochem Biophys Res Commun; 2024 Feb; 695():149400. PubMed ID: 38160530 [TBL] [Abstract][Full Text] [Related]
13. Molecular mechanisms in governing genomic stability and tumor suppression by the SETD2 H3K36 methyltransferase. Lam UTF; Chen ES Int J Biochem Cell Biol; 2022 Mar; 144():106155. PubMed ID: 34990836 [TBL] [Abstract][Full Text] [Related]
14. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Carvalho S; Raposo AC; Martins FB; Grosso AR; Sridhara SC; Rino J; Carmo-Fonseca M; de Almeida SF Nucleic Acids Res; 2013 Mar; 41(5):2881-93. PubMed ID: 23325844 [TBL] [Abstract][Full Text] [Related]
15. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing. Zhu K; Lei PJ; Ju LG; Wang X; Huang K; Yang B; Shao C; Zhu Y; Wei G; Fu XD; Li L; Wu M Nucleic Acids Res; 2017 Jan; 45(1):92-105. PubMed ID: 27614073 [TBL] [Abstract][Full Text] [Related]
16. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Yoh SM; Lucas JS; Jones KA Genes Dev; 2008 Dec; 22(24):3422-34. PubMed ID: 19141475 [TBL] [Abstract][Full Text] [Related]
17. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3). Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924 [TBL] [Abstract][Full Text] [Related]
18. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. de Almeida SF; Grosso AR; Koch F; Fenouil R; Carvalho S; Andrade J; Levezinho H; Gut M; Eick D; Gut I; Andrau JC; Ferrier P; Carmo-Fonseca M Nat Struct Mol Biol; 2011 Jul; 18(9):977-83. PubMed ID: 21792193 [TBL] [Abstract][Full Text] [Related]
19. Sequence specificity analysis of the SETD2 protein lysine methyltransferase and discovery of a SETD2 super-substrate. Schuhmacher MK; Beldar S; Khella MS; Bröhm A; Ludwig J; Tempel W; Weirich S; Min J; Jeltsch A Commun Biol; 2020 Sep; 3(1):511. PubMed ID: 32939018 [TBL] [Abstract][Full Text] [Related]
20. Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Jain SU; Khazaei S; Marchione DM; Lundgren SM; Wang X; Weinberg DN; Deshmukh S; Juretic N; Lu C; Allis CD; Garcia BA; Jabado N; Lewis PW Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27354-27364. PubMed ID: 33067396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]