These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34391847)
1. Mof acetyltransferase inhibition ameliorates glucose intolerance and islet dysfunction of type 2 diabetes via targeting pancreatic α-cells. Guo X; Cui C; Song J; He Q; Zang N; Hu H; Wang X; Li D; Wang C; Hou X; Li X; Liang K; Yan F; Chen L Mol Cell Endocrinol; 2021 Nov; 537():111425. PubMed ID: 34391847 [TBL] [Abstract][Full Text] [Related]
2. Mof regulates glucose level via altering different α-cell subset mass and intra-islet glucagon-like peptide-1, glucagon secretion. Guo X; Li D; Song J; Yang Q; Wang M; Yang Y; Wang L; Hou X; Chen L; Li X Metabolism; 2020 Aug; 109():154290. PubMed ID: 32522488 [TBL] [Abstract][Full Text] [Related]
3. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. Kumar DP; Asgharpour A; Mirshahi F; Park SH; Liu S; Imai Y; Nadler JL; Grider JR; Murthy KS; Sanyal AJ J Biol Chem; 2016 Mar; 291(13):6626-40. PubMed ID: 26757816 [TBL] [Abstract][Full Text] [Related]
4. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Pessoa Rodrigues C; Chatterjee A; Wiese M; Stehle T; Szymanski W; Shvedunova M; Akhtar A Nat Commun; 2021 Oct; 12(1):6212. PubMed ID: 34707105 [TBL] [Abstract][Full Text] [Related]
5. Dapagliflozin promotes beta cell regeneration by inducing pancreatic endocrine cell phenotype conversion in type 2 diabetic mice. Wei R; Cui X; Feng J; Gu L; Lang S; Wei T; Yang J; Liu J; Le Y; Wang H; Yang K; Hong T Metabolism; 2020 Oct; 111():154324. PubMed ID: 32712220 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide profiling of histone H3K27 acetylation featured fatty acid signalling in pancreatic beta cells in diet-induced obesity in mice. Nammo T; Udagawa H; Funahashi N; Kawaguchi M; Uebanso T; Hiramoto M; Nishimura W; Yasuda K Diabetologia; 2018 Dec; 61(12):2608-2620. PubMed ID: 30284014 [TBL] [Abstract][Full Text] [Related]
7. A switch from prohormone convertase (PC)-2 to PC1/3 expression in transplanted alpha-cells is accompanied by differential processing of proglucagon and improved glucose homeostasis in mice. Wideman RD; Covey SD; Webb GC; Drucker DJ; Kieffer TJ Diabetes; 2007 Nov; 56(11):2744-52. PubMed ID: 17698597 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. Wang SW; Sheng H; Bai YF; Weng YY; Fan XY; Zheng F; Fu JQ; Zhang F Phytomedicine; 2021 Jul; 88():153454. PubMed ID: 33663922 [TBL] [Abstract][Full Text] [Related]
10. Fam3a-mediated prohormone convertase switch in α-cells regulates pancreatic GLP-1 production in an Nr4a2-Foxa2-dependent manner. Wang D; Wei T; Cui X; Xia L; Jiang Y; Yin D; Liao X; Li F; Li J; Wu Q; Lin X; Lang S; Le Y; Yang J; Yang J; Wei R; Hong T Metabolism; 2024 Oct; ():156042. PubMed ID: 39362520 [TBL] [Abstract][Full Text] [Related]
11. Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice. Zhang X; Liu H; Zhou JQ; Krick S; Barnes JW; Thannickal VJ; Sanders YY Theranostics; 2022; 12(2):530-541. PubMed ID: 34976199 [TBL] [Abstract][Full Text] [Related]
12. Metabolic regulation of GLP-1 and PC1/3 in pancreatic α-cell line. Sancho V; Daniele G; Lucchesi D; Lupi R; Ciccarone A; Penno G; Bianchi C; Dardano A; Miccoli R; Del Prato S PLoS One; 2017; 12(11):e0187836. PubMed ID: 29121068 [TBL] [Abstract][Full Text] [Related]
13. MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters. Wang D; Li H; Chandel NS; Dou Y; Yi R Nat Commun; 2023 Jul; 14(1):4404. PubMed ID: 37479688 [TBL] [Abstract][Full Text] [Related]
14. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Sharma GG; So S; Gupta A; Kumar R; Cayrou C; Avvakumov N; Bhadra U; Pandita RK; Porteus MH; Chen DJ; Cote J; Pandita TK Mol Cell Biol; 2010 Jul; 30(14):3582-95. PubMed ID: 20479123 [TBL] [Abstract][Full Text] [Related]
15. Progressive change of intra-islet GLP-1 production during diabetes development. O'Malley TJ; Fava GE; Zhang Y; Fonseca VA; Wu H Diabetes Metab Res Rev; 2014 Nov; 30(8):661-8. PubMed ID: 24510483 [TBL] [Abstract][Full Text] [Related]
16. Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF. Zhang Y; Jang Y; Lee JE; Ahn J; Xu L; Holden MR; Cornett EM; Krajewski K; Klein BJ; Wang SP; Dou Y; Roeder RG; Strahl BD; Rothbart SB; Shi X; Ge K; Kutateladze TG Nat Commun; 2019 May; 10(1):2314. PubMed ID: 31127101 [TBL] [Abstract][Full Text] [Related]
17. High-fat diet induces early-onset diabetes in heterozygous Pax6 mutant mice. Chen Y; Feng R; Wang H; Wei R; Yang J; Wang L; Wang H; Zhang L; Hong TP; Wen J Diabetes Metab Res Rev; 2014 Sep; 30(6):467-75. PubMed ID: 24925705 [TBL] [Abstract][Full Text] [Related]
18. Persistent high glucose induced EPB41L4A-AS1 inhibits glucose uptake via GCN5 mediating crotonylation and acetylation of histones and non-histones. Liao W; Xu N; Zhang H; Liao W; Wang Y; Wang S; Zhang S; Jiang Y; Xie W; Zhang Y Clin Transl Med; 2022 Feb; 12(2):e699. PubMed ID: 35184403 [TBL] [Abstract][Full Text] [Related]
19. Genetic activation of α-cell glucokinase in mice causes enhanced glucose-suppression of glucagon secretion during normal and diabetic states. Bahl V; Lee May C; Perez A; Glaser B; Kaestner KH Mol Metab; 2021 Jul; 49():101193. PubMed ID: 33610858 [TBL] [Abstract][Full Text] [Related]
20. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis. Jones HB; Reens J; Brocklehurst SR; Betts CJ; Bickerton S; Bigley AL; Jenkins RP; Whalley NM; Morgan D; Smith DM Int J Exp Pathol; 2014 Feb; 95(1):29-48. PubMed ID: 24456331 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]