These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34391994)

  • 61. Theoretical perspective for substitution effect on luminescent properties of through space charge transfer-based thermally activated delayed fluorescence molecules.
    Zou H; Liu H; Mu Q; Zhang K; Song Y; Lin L; Xu Y; Wang CK; Fan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121899. PubMed ID: 36179564
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Modulation of Thermally Activated Delayed Fluorescence in Waterborne Polyurethanes via Charge-Transfer Effect.
    Li Z; Wang T; Xu D; Zuo J; Li X; Li Z; Xu F; Zhang X
    Chem Asian J; 2019 Jul; 14(13):2302-2308. PubMed ID: 31077557
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Achieving high singlet-oxygen generation by applying the heavy-atom effect to thermally activated delayed fluorescent materials.
    Xiao YF; Chen JX; Chen WC; Zheng X; Cao C; Tan J; Cui X; Yuan Z; Ji S; Lu G; Liu W; Wang P; Li S; Lee CS
    Chem Commun (Camb); 2021 May; 57(40):4902-4905. PubMed ID: 33870972
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.
    Gibson J; Penfold TJ
    Phys Chem Chem Phys; 2017 Mar; 19(12):8428-8434. PubMed ID: 28286891
    [TBL] [Abstract][Full Text] [Related]  

  • 65. P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States.
    Hofbeck T; Niehaus TA; Fleck M; Monkowius U; Yersin H
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200044
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters.
    Dias FB; Bourdakos KN; Jankus V; Moss KC; Kamtekar KT; Bhalla V; Santos J; Bryce MR; Monkman AP
    Adv Mater; 2013 Jul; 25(27):3707-14. PubMed ID: 23703877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through-space Charge Transfers.
    Huang T; Wang Q; Xiao S; Zhang D; Zhang Y; Yin C; Yang D; Ma D; Wang Z; Duan L
    Angew Chem Int Ed Engl; 2021 Oct; 60(44):23771-23776. PubMed ID: 34405502
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design of Intramolecular Dihedral Angle between Electronic Donor and Acceptor in Thermally Activated Delayed Fluorescence Molecules.
    Qian X; Chu F; Zhou W; Zheng Z; Chen X; Zhao Y
    J Phys Chem Lett; 2023 Apr; 14(13):3335-3342. PubMed ID: 36994861
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Light emission mechanism in dimers of carbene-metal-amide complexes.
    Ruduss A; Belyakov S; Stucere KA; Vembris A; Traskovskis K
    Phys Chem Chem Phys; 2023 Jan; 25(4):3220-3231. PubMed ID: 36625398
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Thermally activated delayed fluorescence of a Ir(III) complex: absorption and emission properties, nonradiative rates, and mechanism.
    Peng LY; Li ZW; Pan GN; Chen WK; Gao YJ; Cui G
    Phys Chem Chem Phys; 2023 Feb; 25(8):6454-6460. PubMed ID: 36779957
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Triggering Thermally Activated Delayed Fluorescence by Managing the Heteroatom in Donor Scaffolds: Intriguing Photophysical and Electroluminescence Properties.
    Konidena RK; Lee KH; Lee JY; Hong WP
    Chem Asian J; 2019 Jul; 14(13):2251-2258. PubMed ID: 30969458
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small Singlet-Triplet Splitting With Large Fluorescence Rate.
    Liu J; Zhou K; Wang D; Deng C; Duan K; Ai Q; Zhang Q
    Front Chem; 2019; 7():312. PubMed ID: 31165054
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Intrinsic Analysis of Radiative and Room-Temperature Nonradiative Processes Based on Triplet State Intramolecular Vibrations of Heavy Atom-Free Conjugated Molecules toward Efficient Persistent Room-Temperature Phosphorescence.
    Hirata S
    J Phys Chem Lett; 2018 Aug; 9(15):4251-4259. PubMed ID: 29979876
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Theoretical Insights into the Optical and Excited State Properties of Donor-Phenyl Bridge-Acceptor Containing Through-Space Charge Transfer Molecules.
    Sivasakthi P; Jacob JM; Ravva MK; Samanta PK
    J Phys Chem A; 2023 Feb; 127(4):886-893. PubMed ID: 36653147
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly Efficient Purely Organic Phosphorescence Light-Emitting Diodes Employing a Donor-Acceptor Skeleton with a Phenoxaselenine Donor.
    Chen Z; Li M; Gu Q; Peng X; Qiu W; Xie W; Liu D; Jiao Y; Liu K; Zhou J; Su SJ
    Adv Sci (Weinh); 2023 Apr; 10(12):e2207003. PubMed ID: 36806703
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Thermally Activated Delayed Fluorescence Mechanism of a Bicyclic "Carbene-Metal-Amide" Copper Compound: DFT/MRCI Studies and Roles of Excited-State Structure Relaxation.
    Song XF; Li ZW; Chen WK; Gao YJ; Cui G
    Inorg Chem; 2022 May; 61(20):7673-7681. PubMed ID: 35200011
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Theoretical insights into the excited-state properties of room-temperature phosphorescence-emitting N-substituted naphthalimides.
    Samanta PK; Pati SK
    J Mol Model; 2018 Aug; 24(9):246. PubMed ID: 30128608
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of Thermally Activated Delayed Fluorescence to Room-Temperature Phosphorescent Emission Channels by Controlling the Excited-States Dynamics via J- and H-Aggregation.
    Li S; Fu L; Xiao X; Geng H; Liao Q; Liao Y; Fu H
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18059-18064. PubMed ID: 34075684
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dicyano-Imidazole: A Facile Generation of Pure Blue TADF Materials for OLEDs.
    Yi RH; Liu GY; Luo YT; Wang WY; Tsai HY; Lin CH; Shen HL; Chang CH; Lu CW
    Chemistry; 2021 Sep; 27(51):12998-13008. PubMed ID: 34288149
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Molecular-Level Insight of Cu(I) Complexes with the 7,8-Bis(diphenylphosphino)-7,8-dicarba-
    He TF; Ren AM; Chen YN; Hao XL; Shen L; Zhang BH; Wu TS; Zhang HX; Zou LY
    Inorg Chem; 2020 Sep; 59(17):12039-12053. PubMed ID: 32786269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.