These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34392037)

  • 1. Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone.
    Han Y; Gomez J; Hua R; Xiao P; Gao W; Jiang JX; Wang X
    J Mech Behav Biomed Mater; 2021 Nov; 123():104766. PubMed ID: 34392037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2018 Jun; 82():18-26. PubMed ID: 29567526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competing mechanisms in fracture of staggered mineralized collagen fibril arrays.
    Xu M; An B; Zhang D
    J Mech Behav Biomed Mater; 2023 May; 141():105761. PubMed ID: 36905708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-silico simulation of nanoindentation on bone using a 2D cohesive finite element model.
    Xiao P; Roy A; Wang X
    J Mech Behav Biomed Mater; 2024 Mar; 151():106403. PubMed ID: 38237206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse.
    Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF
    Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling Effect of Water and Proteoglycans on the In Situ Toughness of Bone.
    Wang X; Xu H; Huang Y; Gu S; Jiang JX
    J Bone Miner Res; 2016 May; 31(5):1026-9. PubMed ID: 26709950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water promotes the formation of fibril bridging in antler bone illuminated by in situ AFM testing.
    Chen X; Qian T; Hang F; Chen X
    J Mech Behav Biomed Mater; 2021 Aug; 120():104580. PubMed ID: 34015573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cementum-dentin junction also contains glycosaminoglycans and collagen fibrils.
    Ho SP; Sulyanto RM; Marshall SJ; Marshall GW
    J Struct Biol; 2005 Jul; 151(1):69-78. PubMed ID: 15964205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the role of diverse mineralisation paradigms on bone biomechanics - a coarse-grained molecular dynamics investigation.
    Tavakol M; Vaughan TJ
    Nanoscale; 2024 Feb; 16(6):3173-3184. PubMed ID: 38259246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of glycosaminoglycan content in bone using Raman spectroscopy.
    Heath S; Han Y; Hua R; Roy A; Jiang J; Nyman JS; Wang X
    Bone; 2023 Jun; 171():116751. PubMed ID: 36996996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone.
    Al-Qudsy L; Hu YW; Xu H; Yang PF
    ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AGE-RELATED DETERIORATION OF BONE TOUGHNESS IS RELATED TO DIMINISHING AMOUNT OF MATRIX GLYCOSAMINOGLYCANS (GAGS).
    Wang X; Hua R; Ahsan A; Ni Q; Huang Y; Gu S; Jiang JX
    JBMR Plus; 2018 May; 2(3):164-173. PubMed ID: 30009278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
    Lin L; Samuel J; Zeng X; Wang X
    J Mech Behav Biomed Mater; 2017 Jan; 65():224-235. PubMed ID: 27592291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.