These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34392061)

  • 1. Combining crystallography with quantum mechanics.
    Bergmann J; Oksanen E; Ryde U
    Curr Opin Struct Biol; 2022 Feb; 72():18-26. PubMed ID: 34392061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the crystal structure of vanadium nitrogenase contain a reaction intermediate? Evidence from quantum refinement.
    Cao L; Caldararu O; Ryde U
    J Biol Inorg Chem; 2020 Sep; 25(6):847-861. PubMed ID: 32856107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package.
    Borbulevych OY; Plumley JA; Martin RI; Merz KM; Westerhoff LM
    Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1233-47. PubMed ID: 24816093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
    Borbulevych OY; Martin RI; Westerhoff LM
    J Comput Aided Mol Des; 2021 Apr; 35(4):433-451. PubMed ID: 33108589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.
    Borbulevych O; Martin RI; Tickle IJ; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2016 Apr; 72(Pt 4):586-98. PubMed ID: 27050137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum-refinement studies of the bidentate ligand of V‑nitrogenase and the protonation state of CO-inhibited Mo‑nitrogenase.
    Bergmann J; Oksanen E; Ryde U
    J Inorg Biochem; 2021 Jun; 219():111426. PubMed ID: 33756394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum refinement with multiple conformations: application to the P-cluster in nitrogenase.
    Cao L; Ryde U
    Acta Crystallogr D Struct Biol; 2020 Nov; 76(Pt 11):1145-1156. PubMed ID: 33135685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refinement of protein crystal structures using energy restraints derived from linear-scaling quantum mechanics.
    Yu N; Yennawar HP; Merz KM
    Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):322-32. PubMed ID: 15735343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation status of metal-bound ligands can be determined by quantum refinement.
    Nilsson K; Ryde U
    J Inorg Biochem; 2004 Sep; 98(9):1539-46. PubMed ID: 15337606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ ligand restraints from quantum-mechanical methods.
    Liebschner D; Moriarty NW; Poon BK; Adams PD
    Acta Crystallogr D Struct Biol; 2023 Feb; 79(Pt 2):100-110. PubMed ID: 36762856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The O
    Askerka M; Brudvig GW; Batista VS
    Acc Chem Res; 2017 Jan; 50(1):41-48. PubMed ID: 28001034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data.
    Caldararu O; Manzoni F; Oksanen E; Logan DT; Ryde U
    Acta Crystallogr D Struct Biol; 2019 Apr; 75(Pt 4):368-380. PubMed ID: 30988254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protonation status of compound II in myoglobin, studied by a combination of experimental data and quantum chemical calculations: quantum refinement.
    Nilsson K; Hersleth HP; Rod TH; Andersson KK; Ryde U
    Biophys J; 2004 Nov; 87(5):3437-47. PubMed ID: 15339813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum Refinement Does Not Support Dinuclear Copper Sites in Crystal Structures of Particulate Methane Monooxygenase.
    Cao L; Caldararu O; Rosenzweig AC; Ryde U
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):162-166. PubMed ID: 29164769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1.
    Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W
    J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum refinement of [FeFe] hydrogenase indicates a dithiomethylamine ligand.
    Ryde U; Greco C; De Gioia L
    J Am Chem Soc; 2010 Apr; 132(13):4512-3. PubMed ID: 20230002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
    Janowski PA; Moriarty NW; Kelley BP; Case DA; York DM; Adams PD; Warren GL
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1062-72. PubMed ID: 27599738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.