These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34392128)

  • 1. Optimal number of strong labels for curriculum learning with convolutional neural network to classify pulmonary abnormalities in chest radiographs.
    Cho Y; Park B; Lee SM; Lee KH; Seo JB; Kim N
    Comput Biol Med; 2021 Sep; 136():104750. PubMed ID: 34392128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Curriculum Learning Strategy to Enhance the Accuracy of Classification of Various Lesions in Chest-PA X-ray Screening for Pulmonary Abnormalities.
    Park B; Cho Y; Lee G; Lee SM; Cho YH; Lee ES; Lee KH; Seo JB; Kim N
    Sci Rep; 2019 Oct; 9(1):15352. PubMed ID: 31653943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the Robustness of Convolutional Neural Networks in Labeling Noise by Using Chest X-Ray Images From Multiple Centers.
    Jang R; Kim N; Jang M; Lee KH; Lee SM; Lee KH; Noh HN; Seo JB
    JMIR Med Inform; 2020 Aug; 8(8):e18089. PubMed ID: 32749222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks.
    Pan I; Agarwal S; Merck D
    J Digit Imaging; 2019 Oct; 32(5):888-896. PubMed ID: 30838482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of abnormality detection on chest radiographs using convolutional neural network in paired radiographs obtained within a short-term interval.
    Cho Y; Kim YG; Lee SM; Seo JB; Kim N
    Sci Rep; 2020 Oct; 10(1):17417. PubMed ID: 33060837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections.
    Kim YG; Kim S; Cho CE; Song IH; Lee HJ; Ahn S; Park SY; Gong G; Kim N
    Sci Rep; 2020 Dec; 10(1):21899. PubMed ID: 33318495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms.
    Li D; Lin CT; Sulam J; Yi PH
    Emerg Radiol; 2022 Apr; 29(2):365-370. PubMed ID: 35006495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers.
    Thian YL; Ng DW; Hallinan JTPD; Jagmohan P; Sia SY; Mohamed JSA; Quek ST; Feng M
    J Digit Imaging; 2022 Aug; 35(4):881-892. PubMed ID: 35239091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Deep Anomaly Detection in Chest Radiographs.
    Nakao T; Hanaoka S; Nomura Y; Murata M; Takenaga T; Miki S; Watadani T; Yoshikawa T; Hayashi N; Abe O
    J Digit Imaging; 2021 Apr; 34(2):418-427. PubMed ID: 33555397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images.
    Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A
    Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training and Validating a Deep Convolutional Neural Network for Computer-Aided Detection and Classification of Abnormalities on Frontal Chest Radiographs.
    Cicero M; Bilbily A; Colak E; Dowdell T; Gray B; Perampaladas K; Barfett J
    Invest Radiol; 2017 May; 52(5):281-287. PubMed ID: 27922974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs.
    Yi PH; Kim TK; Lin CT
    Clin Imaging; 2022 Jul; 87():34-37. PubMed ID: 35483162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels.
    Hallinan JTPD; Feng M; Ng D; Sia SY; Tiong VTY; Jagmohan P; Makmur A; Thian YL
    Acad Radiol; 2022 Sep; 29(9):1350-1358. PubMed ID: 34649780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation Between Anteroposterior and Posteroanterior Chest X-Ray View Position With Convolutional Neural Networks.
    Hosch R; Kroll L; Nensa F; Koitka S
    Rofo; 2021 Feb; 193(2):168-176. PubMed ID: 32615636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs.
    Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW
    Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.
    Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT
    J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep convolution neural networks to differentiate between COVID-19 and other pulmonary abnormalities on chest radiographs: Evaluation using internal and external datasets.
    Cho Y; Hwang SH; Oh YW; Ham BJ; Kim MJ; Park BJ
    Int J Imaging Syst Technol; 2021 Sep; 31(3):1087-1104. PubMed ID: 34219953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning.
    Kim YG; Lee SM; Lee KH; Jang R; Seo JB; Kim N
    Eur Radiol; 2020 Sep; 30(9):4943-4951. PubMed ID: 32350657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network.
    Bae HJ; Hyun H; Byeon Y; Shin K; Cho Y; Song YJ; Yi S; Kuh SU; Yeom JS; Kim N
    Comput Methods Programs Biomed; 2020 Feb; 184():105119. PubMed ID: 31627152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomy-specific Progression Classification in Chest Radiographs via Weakly Supervised Learning.
    Yu K; Ghosh S; Liu Z; Deible C; Poynton CB; Batmanghelich K
    Radiol Artif Intell; 2024 Sep; 6(5):e230277. PubMed ID: 39046325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.