These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 34392202)
1. The Co-Transport of PFAS and Cr(VI) in porous media. Huang D; Khan NA; Wang G; Carroll KC; Brusseau ML Chemosphere; 2022 Jan; 286(Pt 3):131834. PubMed ID: 34392202 [TBL] [Abstract][Full Text] [Related]
2. Transport of PFOS in aquifer sediment: Transport behavior and a distributed-sorption model. Wang Y; Khan N; Huang D; Carroll KC; Brusseau ML Sci Total Environ; 2021 Jul; 779():146444. PubMed ID: 33740555 [TBL] [Abstract][Full Text] [Related]
3. Potential impact of bacteria on the transport of PFAS in porous media. Dai M; Yan N; Brusseau ML Water Res; 2023 Sep; 243():120350. PubMed ID: 37499541 [TBL] [Abstract][Full Text] [Related]
4. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media. Huang D; Saleem H; Guo B; Brusseau ML Sci Total Environ; 2022 Feb; 806(Pt 2):150595. PubMed ID: 34592291 [TBL] [Abstract][Full Text] [Related]
5. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media. Abraham JEF; Mumford KG; Patch DJ; Weber KP Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175 [TBL] [Abstract][Full Text] [Related]
6. Ideal versus Nonideal Transport of PFAS in Unsaturated Porous Media. Brusseau ML; Guo B; Huang D; Yan N; Lyu Y Water Res; 2021 Sep; 202():117405. PubMed ID: 34273774 [TBL] [Abstract][Full Text] [Related]
7. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms. Li J; Zheng T; Yuan D; Gao C; Liu C Chemosphere; 2020 Jun; 249():126039. PubMed ID: 32062202 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive retention model for PFAS transport in subsurface systems. Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197 [TBL] [Abstract][Full Text] [Related]
9. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. Brusseau ML; Khan N; Wang Y; Yan N; Van Glubt S; Carroll KC Environ Sci Technol; 2019 Sep; 53(18):10654-10664. PubMed ID: 31464435 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils. Campos-Pereira H; Kleja DB; Ahrens L; Enell A; Kikuchi J; Pettersson M; Gustafsson JP Chemosphere; 2023 Apr; 321():138133. PubMed ID: 36791815 [TBL] [Abstract][Full Text] [Related]
11. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia. Van Glubt S; Brusseau ML; Yan N; Huang D; Khan N; Carroll KC Environ Pollut; 2021 Jan; 268(Pt B):115917. PubMed ID: 33143983 [TBL] [Abstract][Full Text] [Related]
12. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media. Van Glubt S; Brusseau ML Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425 [TBL] [Abstract][Full Text] [Related]
13. The complex effect of dissolved organic carbon on desorption of per- and poly-fluoroalkyl substances from soil under alkaline conditions. Kabiri S; Tavakkoli E; Navarro DA; Degryse F; Grimison C; Higgins CP; Mueller JF; Kookana RS; McLaughlin MJ Environ Pollut; 2024 Sep; 356():124234. PubMed ID: 38815892 [TBL] [Abstract][Full Text] [Related]
14. Coupled high and low-frequency ultrasound remediation of PFAS-contaminated soils. Kewalramani JA; Wang B; Marsh RW; Meegoda JN; Rodriguez Freire L Ultrason Sonochem; 2022 Aug; 88():106063. PubMed ID: 35738199 [TBL] [Abstract][Full Text] [Related]
15. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil. Borthakur A; Cranmer BK; Dooley GP; Blotevogel J; Mahendra S; Mohanty SK Environ Pollut; 2021 Oct; 286():117297. PubMed ID: 33971474 [TBL] [Abstract][Full Text] [Related]
16. Biochar colloids facilitate transport and transformation of Cr(VI) in soil: Active site competition coupling with reduction reaction. Chen M; Chen X; Xu X; Xu Z; Zhang Y; Song B; Tsang DCW; Xu N; Cao X J Hazard Mater; 2022 Oct; 440():129691. PubMed ID: 35961078 [TBL] [Abstract][Full Text] [Related]
17. Investigation of an immobilization process for PFAS contaminated soils. Barth E; McKernan J; Bless D; Dasu K J Environ Manage; 2021 Oct; 296():113069. PubMed ID: 34225046 [TBL] [Abstract][Full Text] [Related]
18. Retention and transport of PFOA and its fluorinated substitute, GenX, through water-saturated soil columns. Liu G; Usman M; Luo T; Biard PF; Lin K; Greenwell HC; Hanna K Environ Pollut; 2023 Nov; 337():122530. PubMed ID: 37690470 [TBL] [Abstract][Full Text] [Related]
19. A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon. Niarchos G; Georgii L; Ahrens L; Kleja DB; Fagerlund F Ecotoxicol Environ Saf; 2023 Oct; 264():115408. PubMed ID: 37666203 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical destruction and mobilization of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in saturated soil. Hou J; Li G; Liu M; Chen L; Yao Y; Fallgren PH; Jin S Chemosphere; 2022 Jan; 287(Pt 3):132205. PubMed ID: 34563764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]