These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34392678)

  • 1.
    Rodriguez A; Schlichting KP; Poulikakos D; Hu M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39701-39710. PubMed ID: 34392678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical Prediction of Gas Permeation through Graphene Nanopores of Varying Sizes: Understanding Transitions across Multiple Transport Regimes.
    Yuan Z; Misra RP; Rajan AG; Strano MS; Blankschtein D
    ACS Nano; 2019 Oct; 13(10):11809-11824. PubMed ID: 31532624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.
    Schlichting KP; Poulikakos D
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36468-36477. PubMed ID: 32805790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pore density on gas permeation through nanoporous graphene membranes.
    Wang S; Tian Z; Dai S; Jiang DE
    Nanoscale; 2018 Aug; 10(30):14660-14666. PubMed ID: 30033462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of gas permeation through single layer graphene membranes.
    Drahushuk LW; Strano MS
    Langmuir; 2012 Dec; 28(48):16671-8. PubMed ID: 23101879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Transport Properties of Gases in Porous Graphene Membranes with Controlled Pore Size and Thickness.
    Ashirov T; Yazaydin AO; Coskun A
    Adv Mater; 2022 Feb; 34(5):e2106785. PubMed ID: 34775644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation.
    Zhao J; He G; Huang S; Villalobos LF; Dakhchoune M; Bassas H; Agrawal KV
    Sci Adv; 2019 Jan; 5(1):eaav1851. PubMed ID: 30746475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From molecular sieving to gas effusion through nanoporous 2D graphenes: Comparison between analytical predictions and molecular simulations.
    Guo J; Galliero G; Vermorel R
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of nanoporous graphene membranes for the separation of N2 from CO2: a multi-scale computational study.
    Wang Y; Yang Q; Li J; Yang J; Zhong C
    Phys Chem Chem Phys; 2016 Mar; 18(12):8352-8. PubMed ID: 26701145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Gas Separation through Graphene Nanopore Ensembles with Realistic Pore Size Distributions.
    Yuan Z; Govind Rajan A; He G; Misra RP; Strano MS; Blankschtein D
    ACS Nano; 2021 Jan; 15(1):1727-1740. PubMed ID: 33439000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.
    Boutilier MSH; Jang D; Idrobo JC; Kidambi PR; Hadjiconstantinou NG; Karnik R
    ACS Nano; 2017 Jun; 11(6):5726-5736. PubMed ID: 28609103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of molecular permeation through nanoporous graphene membranes.
    Sun C; Boutilier MS; Au H; Poesio P; Bai B; Karnik R; Hadjiconstantinou NG
    Langmuir; 2014 Jan; 30(2):675-82. PubMed ID: 24364726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Chemical Vapor Deposition Synthesis of Porous Single-Layer Graphene Membranes with High Gas Permeances and Selectivities.
    Yuan Z; He G; Faucher S; Kuehne M; Li SX; Blankschtein D; Strano MS
    Adv Mater; 2021 Nov; 33(44):e2104308. PubMed ID: 34510595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Molecular Sieving through a Large Graphene Nanopore with Surface Charges.
    Sun C; Zhu S; Liu M; Shen S; Bai B
    J Phys Chem Lett; 2019 Nov; 10(22):7188-7194. PubMed ID: 31682132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entropic selectivity in air separation via a bilayer nanoporous graphene membrane.
    Wang S; Dai S; Jiang DE
    Phys Chem Chem Phys; 2019 Jul; 21(29):16310-16315. PubMed ID: 31305855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving.
    Huang S; Villalobos LF; Babu DJ; He G; Li M; Züttel A; Agrawal KV
    ACS Appl Mater Interfaces; 2019 May; 11(18):16729-16736. PubMed ID: 30990645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.